520 resultados para eigenvalues
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
For each quantum superalgebra U-q[osp(m parallel to n)] with m > 2, an infinite family of Casimir invariants is constructed. This is achieved by using an explicit form for the Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible highest weight module is also calculated. (c) 2005 American Institute of Physics.
Resumo:
2000 Mathematics Subject Classification: 35J05, 35C15, 44P05
Resumo:
Acknowledgments Alexander Dürre was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. David E. Tyler was supported in part by the National Science Foundation grant DMS-1407751. A visit of Daniel Vogel to David E. Tyler was supported by a travel grant from the Scottish Universities Physics Alliance. The authors are grateful to the editors and referees for their constructive comments.
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.
Resumo:
El efecto de la frecuencia portadora sobre los valores propios de los sistemas MIMO (multiple-input multiple-output) es investigado experimentalmente en un entorno indoor, considerando condiciones de línea de vista (LOS: line-of-sight) y sin línea de vista (NLOS: non-line-of-sight). Los resultados muestran una reducción en la potencia media de los valores propios del sistema MIMO, lo cual es debido a un incremento en la correlación espacial entre los sub-canales cuando la frecuencia portadora se incrementa. Este efecto causa una reducción en la capacidad del sistema MIMO.
Resumo:
The paper begins with a new characterization of (k,τ)(k,τ)-regular sets. Then, using this result as well as the theory of star complements, we derive a simplex-like algorithm for determining whether or not a graph contains a (0,τ)(0,τ)-regular set. When τ=1τ=1, this algorithm can be applied to solve the efficient dominating set problem which is known to be NP-complete. If −1−1 is not an eigenvalue of the adjacency matrix of the graph, this particular algorithm runs in polynomial time. However, although it does not work in polynomial time in general, we report on its successful application to a vast set of randomly generated graphs.
Resumo:
Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.