Eigenvalues of Casimir invariants for Uq[osp(m|n)]
Contribuinte(s) |
Bruno L. Z. Machtergaele |
---|---|
Data(s) |
09/12/2005
|
Resumo |
For each quantum superalgebra U-q[osp(m parallel to n)] with m > 2, an infinite family of Casimir invariants is constructed. This is achieved by using an explicit form for the Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible highest weight module is also calculated. (c) 2005 American Institute of Physics. |
Identificador | |
Idioma(s) |
eng |
Publicador |
American Institute of Physics |
Palavras-Chave | #Physics, Mathematical #Orthosymplectic Lie-superalgebra #T-j-model #Symplectic Groups #R-matrices #Operators #Identities #Algebras #C1 #230199 Mathematics not elsewhere classified #780101 Mathematical sciences |
Tipo |
Journal Article |