800 resultados para eddy-current
Resumo:
This study aims to analyze the feasibility of using predictive techniques like thermography, vibration analysis, eddy current, liquid penetrant, visual examination and ultrasound in equipment as batch reactors of the type used in a biodiesel production company. This study is based on: analysis of the practices of corrective and preventive maintenance commonly adopted in the company in question, the cost and time spent for such activities and the potential savings and revenue generation that can be after implementation of these techniques on the analysis of maintenance current
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este artigo foi escrito para mostrar aos alunos de graduação em Física e Engenharia como estimar as correntes de Foucault. Inicialmente fazemos uma breve análise das condições de contorno entre dois meios com diferentes parâmetros ε, μ e σ, que devem ser obedecidas tanto por campos eletromagnéticos estáticos quanto dependentes do tempo. Em seguida, usando as equações de Maxwell calculamos as “correntes de Foucault”, ou “eddy currents”, que surgem em um condutor plano metálico (paramagnético ou diamagnético) quando sobre ele é aplicado um campo magnético B(t) variável no tempo, gerado por um solenoide longo de seção reta circular.
Resumo:
Ziel dieser Arbeit ist die Untersuchung der Einflüsse von Blister-Design und Folienqualität auf die Funktionalität von Blisterverpackungen. Hierzu werden analytische Methoden mittels Interferometrie, IR-Spektroskopie, Betarückstreuverfahren, Wirbelstromverfahren und Impedanzspektroskopie entwickelt, die zur quantitativen Bestimmung von Heißsiegellacken und Laminatbeschichtungen von Aluminium-Blisterfolien geeignet sind. Ein Vergleich der Methoden zeigt, dass sich das Betarückstreuverfahren, die Interferometrie und IR-Messungen für die Heißsiegellackbestimmung, die Interferometrie und das Wirbelstromverfahren für die Bestimmung von Kunststofflaminaten eignen.rnIm zweiten Abschnitt der Arbeit werden Einflüsse des Heißsiegellack-Flächengewichtes von Deckfolien auf die Qualität von Blisterverpackungen untersucht. Mit Zunahme des Flächengewichtes zeigt sich eine Erhöhung der Siegelnahtfestigkeit aber auch der Wasserdampfdurchlässigkeit von Blistern. Die untersuchten Heißsiegellacke zeigen Permeationskoeffizienten vergleichbar mit Polyvinylchlorid. In Untersuchungen zur Siegelprozessvalidität zeigt das Heißsiegellack-Flächengewicht nur geringfügige Auswirkungen auf diese. rnIm dritten Abschnitt der Arbeit werden Einflüsse des Blister-Designs auf die Benutzerfreundlichkeit von Blisterverpackungen durch eine Handlingstudie untersucht. Variationen der Öffnungskräfte von Durchdrück-Blistern wirken sich deutlich auf die Bewertungen der Blister durch die Probanden aus. Während die meisten Probanden alle getesteten Durchdrück-Blister innerhalb der Testdauer von 4 Minuten öffnen können (>84%), treten beim Peel-Blister und Peel-off-push-through-Blister deutlich mehr Handlingprobleme auf. Die Handlingprobleme korrelieren mit dem Alter, der Lebenssituation, der gesundheitlichen Verfassung und der Sehfähigkeit der Probanden. rn
Resumo:
PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav = 0.41 × 10(-3) s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav = 0.48 × 10(-3) s/mm(2) , FA = 0.34), carnosine (ADCav = 0.46 × 10(-3) s/mm(2) , FA = 0.47), and water (ADCav = 1.5 × 10(-3) s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.
Resumo:
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of convergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.
Resumo:
This thesis describes an investigation of methods by which both repetitive and non-repetitive electrical transients in an HVDC converter station may be controlled for minimum overall cost. Several methods of inrush control are proposed and studied. The preferred method, whose development is reported in this thesis, would utilize two magnetic materials, one of which is assumed to be lossless and the other has controlled eddy-current losses. Mathematical studies are performed to assess the optimum characteristics of these materials, such that inrush current is suitably controlled for a minimum saturation flux requirement. Subsequent evaluation of the cost of hardware and capitalized losses of the proposed inrush control, indicate that a cost reduction of approximately 50% is achieved, in comparison with the inrush control hardware for the Sellindge converter station. Further mathematical studies are carried out to prove the adequacy of the proposed inrush control characteristics for controlling voltage and current transients during both repetitive and non-repetitive operating conditions. The results of these proving studies indicate that no change in the proposed characteristics is required to ensure that integrity of the thyristors is maintained.
Resumo:
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Resumo:
A two degrees of freedom (2-DOF) actuator capable of producing linear translation, rotary motion, or helical motion would be a desirable asset to the fields of machine tools, robotics, and various apparatuses. In this paper, a novel 2-DOF split-stator induction motor was proposed and electromagnetic structure pa- rameters of the motor were designed and optimized. The feature of the direct-drive 2-DOF induction motor lies in its solid mover ar- rangement. In order to study the complex distribution of the eddy current field on the ferromagnetic cylinder mover and the motor’s operating characteristics, the mathematical model of the proposed motor was established, and characteristics of the motor were ana- lyzed by adopting the permeation depth method (PDM) and finite element method (FEM). The analytical and numerical results from motor simulation clearly show a correlation between the PDM and FEM models. This may be considered as a fair justification for the proposed machine and design tools.
Resumo:
This work deals with the analytical, computational and experimental study of phenomena related to the Eddy current induction in low permeability means for embedded electromagnetic braking systems applications. The phenomena of forces generation in opposing to the variation of stationary magnetic flux produced by DC power supplies, set in motion by the application of an external propulsive force are addressed. The study is motivated by search for solving the problem of speed control of PIGs used to verifying and maintaining pipelines, and is led based on the analytical models synthesis, validated by means of computer simulations in Finite Elements environment, provided by engineering support software; and with experimental tests conducted under controlled laboratory conditions. Finally, a damping systems design methodology based on analyzes results conducted throughout the study is presented
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.