995 resultados para duality theory
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Superstring field theory was recently used to derive a four-dimensional Maxwell action with manifest duality. This action is related to the McClain-Wu-Yu Hamiltonian and can be locally coupled to electric and magnetic sources. In this letter, the manifestly dual Maxwell action is supersymmetrized using N = 1 and N = 2 superspace. The N = 2 version may be useful for studying Seiberg-Witten duality. © 1997 Elsevier Science B.V.
Resumo:
The standard eleven-dimensional supergravity action depends on a three-form gauge field and does not allow direct coupling to five-branes. Using previously developed methods, we construct a covariant eleven-dimensional supergravity action depending on a three-form and six-form gauge field in a duality-symmetric manner. This action is coupled to both the M-theory two-brane and five-brane, and corresponding equations of motion are obtained. Consistent coupling relates D = 11 duality properties with self-duality properties of the M5-brane. From this duality-symmetric formulation, one derives an action describing coupling of the M-branes to standard D = 11 supergravity. © 1998 Elsevier Science B.V.
Resumo:
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute M = 4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes. © SISSA/ISAS 2004.
Resumo:
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality pairs (G, S) and provided a topological interpretation for such pairs through Eilenberg-MacLane pairs K(G, S, 1). A Poincaré duality pair is a pair (G, S) that satisfies two isomorphisms, one between absolute cohomology and relative homology and the second between relative cohomology and absolute homology. In this paper, we present a proof that those two isomorphisms are equivalent. We also present some calculations on duality pairs by using the cohomological invariant defined in [1] and studied in [2-4]. © 2012 Pushpa PublishingHouse.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
If a scalar eld theory in (1+1) dimensions possesses soliton solutions obeying rst order BPS equations, then, in general, it is possible to nd an in nite number of related eld theories with BPS solitons which obey closely related BPS equations. We point out that this fact may be understood as a simple consequence of an appropriately generalised notion of self-duality. We show that this self-duality framework enables us to generalize to higher dimensions the construction of new solitons from already known solutions. By performing simple eld transformations our procedure allows us to relate solitons with di erent topological properties. We present several interesting examples of such solitons in two and three dimensions.
Resumo:
We consider a flux formulation of Double Field Theory in which fluxes are dynamical and field-dependent. Gauge consistency imposes a set of quadratic constraints on the dynamical fluxes, which can be solved by truly double configurations. The constraints are related to generalized Bianchi Identities for (non-)geometric fluxes in the double space, sourced by (exotic) branes. Following previous constructions, we then obtain generalized connections, torsion and curvatures compatible with the consistency conditions. The strong constraint-violating terms needed to make contact with gauged supergravities containing duality orbits of non-geometric fluxes, systematically arise in this formulation.
Resumo:
We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.
Resumo:
We show that global properties of gauge groups can be understood as geometric properties in M-theory. Different wrappings of a system of N M5-branes on a torus reduce to four-dimensional theories with AN−1 gauge algebra and different unitary groups. The classical properties of the wrappings determine the global properties of the gauge theories without the need to impose any quantum conditions. We count the inequivalent wrappings as they fall into orbits of the modular group of the torus, which correspond to the S-duality orbits of the gauge theories.
Resumo:
In this paper we apply the formalism of the analytical signal theory to the Schrödinger wavefunction. Making use exclusively of the wave-particle duality and the rinciple of relativistic covariance, we actually derive the form of the quantum energy and momentum operators for a single nonrelativistic particle. Without using any more quantum postulates, and employing the formalism of the characteristic function, we also derive the quantum-mechanical prescription for the measurement probability in such cases.
Resumo:
Koopmans gyakorlati problémák megoldása során szerzett tapasztalatait általánosítva fogott hozzá a lineáris tevékenységelemzési modell kidolgozásához. Meglepődve tapasztalta, hogy a korabeli közgazdaságtan nem rendelkezett egységes, kellően egzakt termeléselmélettel és fogalomrendszerrel. Úttörő dolgozatában ezért - mintegy a lineáris tevékenységelemzési modell elméleti kereteként - lerakta a technológiai halmazok fogalmán nyugvó axiomatikus termeléselmélet alapjait is. Nevéhez fűződik a termelési hatékonyság és a hatékonysági árak fogalmának egzakt definíciója, s az egymást kölcsönösen feltételező viszonyuk igazolása a lineáris tevékenységelemzési modell keretében. A hatékonyság manapság használatos, pusztán műszaki szempontból értelmezett definícióját Koopmans csak sajátos esetként tárgyalta, célja a gazdasági hatékonyság fogalmának a bevezetése és elemzése volt. Dolgozatunkban a lineáris programozás dualitási tételei segítségével rekonstruáljuk ez utóbbira vonatkozó eredményeit. Megmutatjuk, hogy egyrészt bizonyításai egyenértékűek a lineáris programozás dualitási tételeinek igazolásával, másrészt a gazdasági hatékonysági árak voltaképpen a mai értelemben vett árnyékárak. Rámutatunk arra is, hogy a gazdasági hatékonyság értelmezéséhez megfogalmazott modellje az Arrow-Debreu-McKenzie-féle általános egyensúlyelméleti modellek közvetlen előzményének tekinthető, tartalmazta azok szinte minden lényeges elemét és fogalmát - az egyensúlyi árak nem mások, mint a Koopmans-féle hatékonysági árak. Végezetül újraértelmezzük Koopmans modelljét a vállalati technológiai mikroökonómiai leírásának lehetséges eszközeként. Journal of Economic Literature (JEL) kód: B23, B41, C61, D20, D50. /===/ Generalizing from his experience in solving practical problems, Koopmans set about devising a linear model for analysing activity. Surprisingly, he found that economics at that time possessed no uniform, sufficiently exact theory of production or system of concepts for it. He set out in a pioneering study to provide a theoretical framework for a linear model for analysing activity by expressing first the axiomatic bases of production theory, which rest on the concept of technological sets. He is associated with exact definition of the concept of production efficiency and efficiency prices, and confirmation of their relation as mutual postulates within the linear model of activity analysis. Koopmans saw the present, purely technical definition of efficiency as a special case; he aimed to introduce and analyse the concept of economic efficiency. The study uses the duality precepts of linear programming to reconstruct the results for the latter. It is shown first that evidence confirming the duality precepts of linear programming is equal in value, and secondly that efficiency prices are really shadow prices in today's sense. Furthermore, the model for the interpretation of economic efficiency can be seen as a direct predecessor of the Arrow–Debreu–McKenzie models of general equilibrium theory, as it contained almost every essential element and concept of them—equilibrium prices are nothing other than Koopmans' efficiency prices. Finally Koopmans' model is reinterpreted as a necessary tool for microeconomic description of enterprise technology.
Resumo:
Bródy András kutatásainak egyik központi témaköre a gazdasági mozgás vizsgálata volt. Írásunkban Bródy elméletét kívánjuk röviden áttekinteni és összefoglalni. A termelés sokszektoros leírása egyben árelméletét (értékelméletét, méréselméletét) is keretbe foglalja. Ebben a keretben a gazdasági mozgás összetett ingadozása technológiai alapon elemezhető. Bródy megközelítésében a gazdasági ciklust nem külső megrázkódások magyarázzák, hanem a termelési rendszer belső arányai és kapcsolatai. A termelési struktúrát az árak és a volumenek egyformán alakítják, ezek között nincsen kitüntetett vagy domináns tényező. Az árak és a volumenek a köztük lévő duális kapcsolatban alakulnak ki. A gazdaság mozgásegyenleteit technológiai mérlegösszefüggések, valamint a piaci csere útján a gazdaságban újraelosztásra (újratermelésre) kerülő termékek felhasználása és az eszközlekötés változása írja le. Az így meghatározott mozgásegyenletek a gazdaság természetes mozgását ciklusmozgás alakjában írják le. A technológia vagy az értékviszonyok megváltozása (sokkok) a gazdaság ciklikus mozgásának megváltozásában tükröződik. Bródy munkáiban technológiai megalapozást nyer a történelemből ismert számos jellegzetes gazdasági ciklus. / === / Economic motion and dynamics are at the heart of Andras Brody's creative output. This paper attempts a bird's-eye view of his theory of economic cycles. Brody's multi-sector modelling of production has provided a framework for price theory (the theory of value and measurement). His theory of economic motion with cyclical characteristics is technology driven. It argues that the complex web of economic cycles is determined by the proportions and interrelationships of the system of production, not by arbitrary external shocks. The structure's behaviour are driven by prices and proportions, with the duality of prices and proportions as a dominant feature. These are features in common with the Leontief models, which Brody extended to economic cycles. Brody saw economic cycles as natural motions of economic systems with accumulated assets (time lags) and market exchange of goods (demand and supply adjustment). Changes in technology or valuations (shocks) are reflected in changing patterns of motion. His model of the economy is a fine instrument that enabled him to show how the technological parameters of its system determine the frequency and other characteristics of various economic cycles identified in economic history.