894 resultados para distributed feedback laser
Resumo:
The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. © 2012 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law,
Resumo:
Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.
Resumo:
Narrow-band generation is achieved in random distributed feedback (RDFB) fiber laser by using narrow-band filters in the center of a distributed cavity. The resulting line-width of ∼0.1 nm is 10 times less than line-width in classical random distributed feedback fiber laser. Spectral properties can be optimized further. © 2012 OSA.
Resumo:
The random distributed feedback fiber laser operating via the stimulated Raman scattering and random distributed feedback based on the Rayleigh scattering is demonstrated in the 1.2 μm frequency band. The RDFB fiber laser generates at 1174 nm up to 2.4 W of output power with corresponding slope efficiency more than 30%. The output radiation has the spectral shape similar to the conventional Raman fiber lasers and spectral width less than 1.7 nm. © 2011 Pleiades Publishing, Ltd.
Resumo:
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.
Resumo:
We demonstrate a CW random distributed feedback Raman fiber laser operating in a 1.2 μm spectral band. The laser generates up to 3.8 W of the quasi-CW radiation at 1175 nm with the narrow spectrum of 1 nm. Conversion efficiency reaches 60%. Up to 1 W is generated at the second Stokes wavelength of 1242 nm. It is shown that the generation spectrum of RDFB Raman fiber laser is much narrower than the spectrum in the system without a weak random feedback. © 2011 Optical Society of America.
Resumo:
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating (FBG) reflectors and distributed feedback via Rayleigh scattering in a ∼22 km long optical fiber. Twenty two lasing lines with spacing of ∼100 GHz (close to ITU grid) in C-band are generated at Watts power level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution which is almost independent on power. The current set up showing the capability of generating Raman gain of about 100-nm wide giving the possibility of multiwavelength generation at different bands. © 2011 SPIE.
Resumo:
We present first experimental investigation of fast-intensity dynamics of random distributed feedback (DFB) fiber lasers. We found that the laser dynamics are stochastic on a short time scale and exhibit pronounced fluctuations including generation of extreme events. We also experimentally characterize statistical properties of radiation of random DFB fiber lasers. We found that statistical properties deviate from Gaussian and depend on the pump power.
Resumo:
I will overview our recent results on ultra-long lasers and will discuss the concept of a fiber laser with an open cavity that operates using random distributed feedback provided by Rayleigh scattering amplified through the Raman effect. © 2011 Optical Society of America.
Resumo:
Researchers conducted investigations to demonstrate the advantages of random distributed feedback fiber laser. Random lasers had advantages, such as simple technology that did not require a precise microcavity and low production cost. The properties of their output radiation were special in comparison to those of conventional lasers and they were characterized by complex features in the spatial, spectral, and time domains. The researchers demonstrated a new type of one-dimensional laser with random distributed feedback based on Rayleigh scattering (RS) that was presented in any transparent glass medium due to natural inhomogeneities of refractive index. The cylindrical fiber waveguide geometry provided transverse confinement, while the cavity was open in the longitudinal direction and did not include any regular point-action reflectors.
Resumo:
The intensity pulsations of a cw 1030 nm Yb:Phosphate monolithic waveguide laser with distributed feedback are described. We show that the pulsations could result from the coupling of the two orthogonal polarization modes through the two photon process of cooperative luminescence. The predictions of the presented theoretical model agree well with the observed behaviour.
Resumo:
Herein we report a low-threshold organic laser device based on semiconducting poly(9, 9′ -dioctylfluoren-2,7-diyl-alt-benzothiadiazole) (F8BT) encapsulated in a mechanically stretchable polydimethylsiloxane (PDMS) matrix. We take advantage of the natural flexibility of PDMS to alter the periodicity of the distributed feedback grating which in turn tunes the gain wavelength at which the resonant feedback is obtained. This way, we demonstrate that low-threshold lasing [6.1 μJ cm-2 (5.3 nJ)] is maintained over a large stretching range of 0%-7% which translates into a tuning range of about 20 nm. © 2010 American Institute of Physics.
Resumo:
Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.
Resumo:
Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.