934 resultados para distributed denial-of-service attack


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DDoS attack traffic is difficult to differentiate from legitimate network traffic during transit from the attacker, or zombies, to the victim. In this paper, we use the theory of network self-similarity to differentiate DDoS flooding attack traffic from legitimate self-similar traffic in the network. We observed that DDoS traffic causes a strange attractor to develop in the pattern of network traffic. From this observation, we developed a neural network detector trained by our DDoS prediction algorithm. Our preliminary experiments and analysis indicate that our proposed chaotic model can accurately and effectively detect DDoS attack traffic. Our approach has the potential to not only detect attack traffic during transit, but to also filter it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed denial of service (DDoS) attack is a continuous critical threat to the Internet. Derived from the low layers, new application-layer-based DDoS attacks utilizing legitimate HTTP requests to overwhelm victim resources are more undetectable. The case may be more serious when suchattacks mimic or occur during the flash crowd event of a popular Website. In this paper, we present the design and implementation of CALD, an architectural extension to protect Web servers against various DDoS attacks that masquerade as flash crowds. CALD provides real-time detection using mess tests but is different from other systems that use resembling methods. First, CALD uses a front-end sensor to monitor thetraffic that may contain various DDoS attacks or flash crowds. Intense pulse in the traffic means possible existence of anomalies because this is the basic property of DDoS attacks and flash crowds. Once abnormal traffic is identified, the sensor sends ATTENTION signal to activate the attack detection module. Second, CALD dynamically records the average frequency of each source IP and check the total mess extent. Theoretically, the mess extent of DDoS attacks is larger than the one of flash crowds. Thus, with some parameters from the attack detection module, the filter is capable of letting the legitimate requests through but the attack traffic stopped. Third, CALD may divide the security modules away from the Web servers. As a result, it keeps maximum performance on the kernel web services, regardless of the harassment from DDoS. In the experiments, the records from www.sina.com and www.taobao.com have proved the value of CALD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial of Service (DDoS) attack is a critical threat to the Internet, and botnets are usually the engines behind them. Sophisticated botmasters attempt to disable detectors by mimicking the traffic patterns of flash crowds. This poses a critical challenge to those who defend against DDoS attacks. In our deep study of the size and organization of current botnets, we found that the current attack flows are usually more similar to each other compared to the flows of flash crowds. Based on this, we proposed a discrimination algorithm using the flow correlation coefficient as a similarity metric among suspicious flows. We formulated the problem, and presented theoretical proofs for the feasibility of the proposed discrimination method in theory. Our extensive experiments confirmed the theoretical analysis and demonstrated the effectiveness of the proposed method in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomaly detection techniques are used to find the presence of anomalous activities in a network by comparing traffic data activities against a "normal" baseline. Although it has several advantages which include detection of "zero-day" attacks, the question surrounding absolute definition of systems deviations from its "normal" behaviour is important to reduce the number of false positives in the system. This study proposes a novel multi-agent network-based framework known as Statistical model for Correlation and Detection (SCoDe), an anomaly detection framework that looks for timecorrelated anomalies by leveraging statistical properties of a large network, monitoring the rate of events occurrence based on their intensity. SCoDe is an instantaneous learning-based anomaly detector, practically shifting away from the conventional technique of having a training phase prior to detection. It does acquire its training using the improved extension of Exponential Weighted Moving Average (EWMA) which is proposed in this study. SCoDe does not require any previous knowledge of the network traffic, or network administrators chosen reference window as normal but effectively builds upon the statistical properties from different attributes of the network traffic, to correlate undesirable deviations in order to identify abnormal patterns. The approach is generic as it can be easily modified to fit particular types of problems, with a predefined attribute, and it is highly robust because of the proposed statistical approach. The proposed framework was targeted to detect attacks that increase the number of activities on the network server, examples which include Distributed Denial of Service (DDoS) and, flood and flash-crowd events. This paper provides a mathematical foundation for SCoDe, describing the specific implementation and testing of the approach based on a network log file generated from the cyber range simulation experiment of the industrial partner of this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application Layer Distributed Denial of Service (ALDDoS) attacks have been increasing rapidly with the growth of Botnets and Ubiquitous computing. Differentiate to the former DDoS attacks, ALDDoS attacks cannot be efficiently detected, as attackers always adopt legitimate requests with real IP address, and the traffic has high similarity to legitimate traffic. In spite of that, we think, the attackers' browsing behavior will have great disparity from that of the legitimate users'. In this paper, we put forward a novel user behavior-based method to detect the application layer asymmetric DDoS attack. We introduce an extended random walk model to describe user browsing behavior and establish the legitimate pattern of browsing sequences. For each incoming browser, we observe his page request sequence and predict subsequent page request sequence based on random walk model. The similarity between the predicted and the observed page request sequence is used as a criterion to measure the legality of the user, and then attacker would be detected based on it. Evaluation results based on real collected data set has demonstrated that our method is very effective in detecting asymmetric ALDDoS attacks. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective Distributed Denial of Service (DDoS) defense mechanism must guarantee legitimate users access to an Internet service masking the effects of possible attacks. That is, it must be able to detect threats and discard malicious packets in a online fashion. Given that emerging data streaming technology can enable such mitigation in an effective manner, in this paper we present STONE, a stream-based DDoS defense framework, which integrates anomaly-based DDoS detection and mitigation with scalable data streaming technology. With STONE, the traffic of potential targets is analyzed via continuous data streaming queries maintaining information used for both attack detection and mitigation. STONE provides minimal degradation of legitimate users traffic during DDoS attacks and it also faces effectively flash crowds. Our preliminary evaluation based on an implemented prototype and conducted with real legitimate and malicious traffic traces shows that STONE is able to provide fast detection and precise mitigation of DDoS attacks leveraging scalable data streaming technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes two new transport layer (TCP) options and an expanded transport layer queuing strategy that facilitate three functions that are fundamental to the dispatching-based clustered service. A transport layer option has been developed to facilitate. the use of client wait time data within the service request processing of the cluster. A second transport layer option has been developed to facilitate the redirection of service requests by the cluster dispatcher to the cluster processing member. An expanded transport layer service request queuing strategy facilitates the trust based filtering of incoming service requests so that a graceful degradation of service delivery may be achieved during periods of overload - most dramatically evidenced by distributed denial of service attacks against the clustered service. We describe how these new options and queues have been implemented and successfully tested within the transport layer of the Linux kernel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botnets, which consist of thousands of compromised machines, can cause a significant threat to other systems by launching Distributed Denial of Service attacks, keylogging, and backdoors. In response to this threat, new effective techniques are needed to detect the presence of botnets. In this paper, we have used an interception technique to monitor Windows Application Programming Interface system calls made by communication applications. Existing approaches for botnet detection are based on finding bot traffic patterns. Our approach does not depend on finding patterns but rather monitors the change of behaviour in the system. In addition, we will present our idea of detecting botnet based on log correlations from different hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Flash Event (FE) represents a period of time when a web-server experiences a dramatic increase in incoming traffic, either following a newsworthy event that has prompted users to locate and access it, or as a result of redirection from other popular web or social media sites. This usually leads to network congestion and Quality-of-Service (QoS) degradation. These events can be mistaken for Distributed Denial-of-Service (DDoS) attacks aimed at disrupting the server. Accurate detection of FEs and their distinction from DDoS attacks is important, since different actions need to be undertaken by network administrators in these two cases. However, lack of public domain FE datasets hinders research in this area. In this paper we present a detailed study of flash events and classify them into three broad categories. In addition, the paper describes FEs in terms of three key components: the volume of incoming traffic, the related source IP-addresses, and the resources being accessed. We present such a FE model with minimal parameters and use publicly available datasets to analyse and validate our proposed model. The model can be used to generate different types of FE traffic, closely approximating real-world scenarios, in order to facilitate research into distinguishing FEs from DDoS attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work-in-progress paper presents an ensemble-based model for detecting and mitigating Distributed Denial-of-Service (DDoS) attacks, and its partial implementation. The model utilises network traffic analysis and MIB (Management Information Base) server load analysis features for detecting a wide range of network and application layer DDoS attacks and distinguishing them from Flash Events. The proposed model will be evaluated against realistic synthetic network traffic generated using a software-based traffic generator that we have developed as part of this research. In this paper, we summarise our previous work, highlight the current work being undertaken along with preliminary results obtained and outline the future directions of our work.

Relevância:

100.00% 100.00%

Publicador: