931 resultados para direct-drive motor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion (helium) irradiation, respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence on a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Physically based Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented in this conference for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and impurities (He and C) during the irradiation stage and the subsequent annealing steps. In addition, it allows us to vary the sample temperature to follow the severe thermo-mechanical effects of the pulses. In this work we will describe the helium kinetics for different irradiation conditions. A competition is established between fast helium cluster migration and trapping at large defects, being the temperature a determinant factor. In fact, high temperatures (induced by the pulses) are responsible for large vacancy cluster formation and subsequent additional trapping with respect to low flux irradiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fluid-dynamics of the corona ejected by laser-fusion targets in the direct-drive approach (thermal radiation and atomic physics unimportant) is discussed. A two-fluid model involves inverse bremsstrahlung absorption, refraction, different ion and electron temperatures with energy exchange, different ion and electron velocities and magnetic field generation, and their effect on ion-electron friction and heat flux. Four dimensionless parameters determine coronal regimes for one-dimensional flows under uniform irradiation. One additional parameter is involved in two-dimensional problems,including the stability of one-dimensional flows, and the smoothing of nonuniform driving.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In direct drive Inertial Confinement Fusion (ICF), the typical laser beam to laser beam angle is around 30o. This fact makes the study of the irradiation symmetry agenuine 3D problem. In this paper we use the three dimensional version of the MULTI hydrocode to assess the symmetry of such ICF implosions. More specifically, we study a shock-ignition proposal for the Laser-M´egajoule facility (LMJ) in which two of the equatorial beam cones are used to implode and pre compress a spherical capsule (the “reference” capsule of HiPER project) made of 0.59 mg of pure Deuterium-Tritium mixture. The symmetry of this scheme is analysed and optimized to get a design inside the operating limits of LMJ. The studied configuration has been found essentially axial-symmetric, so that the use of 2D hydrocodes would be appropriate for this specific situation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser?capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho apresentado na Conferência CPE-POWERENG 2016, 29 junho a 01 de julho 2016, Bydgoszcz, Polónia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The direct drive point absorber is a robust and efficient system for wave energy harvesting, where the linear generator represents the most complex part of the system. Therefore, its design and optimization are crucial tasks. The tubular shape of a linear generator’s magnetic circuit offers better permanent magnet flux encapsulation and reduction in radial forces on the translator due to its symmetry. A double stator topology can improve the power density of the linear tubular machine. Common designs employ a set of aligned stators on each side of a translator with radially magnetized permanent magnets. Such designs require doubling the amount of permanent magnet material and lead to an increase in the cogging force. The design presented in this thesis utilizes a translator with buried axially magnetized magnets and axially shifted positioning of the two stators such that no additional magnetic material, compared to single side machine, is required. In addition to the conservation of magnetic material, a significant improvement in the cogging force occurs in the two phase topology, while the double sided three phase system produces more power at the cost of a small increase in the cogging force. The analytical and the FEM models of the generator are described and their results compared to the experimental results. In general, the experimental results compare favourably with theoretical predictions. However, the experimentally observed permanent magnet flux leakage in the double sided machine is larger than predicted theoretically, which can be justified by the limitations in the prototype fabrication and resulting deviations from the theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A closed-loop control technique based on monitoring phase current risetime for switched reluctance (SR) motors without direct rotor-position sensors has been studied and implemented successfully. In this technique the variation in incremental phase inductance in a SR motor is used to detect rotor position. A control circuit for current-waveform-based rotor position detection has been implemented using hard-wire digital circuits. Torque-speed and system-efficiency characteristics resulting from the application of the method to a 4-kW, four-phase SR motor with an IGBT drive are presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, several aspects of high frequency related issues of modern AC motor drive systems, such as common mode voltage, shaft voltage and resultant bearing current and leakage currents, have been discussed. Conducted emission is a major problem in modern motor drives that produce undesirable effects on electronic devices. In modern power electronic systems, increasing power density and decreasing cost and size of system are market requirements. Switching losses, harmonics and EMI are the key factors which should be considered at the beginning stage of a design to optimise a drive system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several brain imaging studies have assumed that response conflict is present in Stroop tasks. However, this has not been demonstrated directly. We examined the time-course of stimulus and response conflict resolution in a numerical Stroop task by combining single-trial electro-myography (EMG) and event-related brain potentials (ERP). EMG enabled the direct tracking of response conflict and the peak latency of the P300 ERP wave was used to index stimulus conflict. In correctly responded trials of the incongruent condition EMG detected robust incorrect response hand activation which appeared consistently in single trials. In 50–80% of the trials correct and incorrect response hand activation coincided temporally, while in 20–50% of the trials incorrect hand activation preceded correct hand activation. EMG data provides robust direct evidence for response conflict. However, congruency effects also appeared in the peak latency of the P300 wave which suggests that stimulus conflict also played a role in the Stroop paradigm. Findings are explained by the continuous flow model of information processing: Partially processed task-irrelevant stimulus information can result in stimulus conflict and can prepare incorrect response activity. A robust congruency effect appeared in the amplitude of incongruent vs. congruent ERPs between 330–400 ms, this effect may be related to the activity of the anterior cingulate cortex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.