915 resultados para conventional electrocardiogram
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pre-vaporization and pre-mixing are the two main features of LPP type of combustor that operate on liquid fuels. The pre-vaporization length scale is one of its most important design parameters. In this study, the goal is to put forward a simulation based correlation for fuel vaporization performance as a function of dimensionless parameters for crossflow type of injections. Two types of fuels are studied here: jet-A and one of its potential biofuel substitutes, RME. Different sets of spray simulations are considered for crossflow type of injections. Correlations are provided for both jet-A and RME's vaporization performance as a function of non-dimensional inlet air temperature, fuel/air momentum flux ratio and normalized spray traverse distance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.
Resumo:
The fatigue behavior of conventional friction stir spot welding (FSSW) and friction stir spot welding refilled by the friction forming process (FSSW-FFP) in aluminum 6061-T6 lap shear specimens, are investigated based on the experimental observations. Optical micrographs of the welds after fatigue failure in both the cases are examined to study the fatigue crack propagation and failure modes. Experimental results indicate that the fatigue strength of the FSSW-FFP weld samples is higher than that of the conventional FSSW samples at all loads. Fracture surfaces are analyzed in detail using the scanning electron microscope. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
Lead-carbon hybrid ultracapacitors comprise positive lead dioxide plates of the lead-acid battery and negative plates of carbon-based electrical double-layer capacitors (EDLCs). Accordingly, a lead-carbon hybrid ultracapacitor has the features of both the battery and that of an EDLC. In this study, the development and performance comparison between the two types of lead-carbon hybrid ultracapacitors, namely those with substrate-integrated and conventional pasted positive plates, is presented as such a study is lacking in the literature. The study suggests that the faradaic efficiencies for both types of lead-carbon hybrid ultracapacitors are comparable. However, their capacitance values as well as energy and power densities differ significantly. For substrate-integrated positive plate hybrid ultracapacitor, capacitance and energy density values are lower, but power density values are higher than pasted positive plate lead-carbon hybrid ultracapacitors due to their shorter response time. Accordingly, internal resistance values are also lower for substrate-integrated lead-carbon hybrid ultracapacitors. Both types of lead-carbon hybrid ultracapacitors exhibit good cycle life of 100,000 pulse charge-discharge cycles with only a nominal loss in their capacitance values.
Resumo:
A novel design for the geometric configuration of honeycombs using a seamless combination of auxetic and conventional cores- elements with negative and positive Possion ratios respectively, has been presented. The proposed design has been shown to generate a superior band gap property while retaining all major advantages of a purely conventional or purely auxetic honeycomb structure. Seamless combination ensures that joint cardinality is also retained. Several configurations involving different degree of auxeticity and different proportions auxetic and conventional elements have been analyzed. It has been shown that the preferred configurations open up wide and clean band gap at a significantly lower frequency ranges compared to their pure counterparts. In view of existence of band gaps being desired feature for the phononic applications, reported results might be appealing. Use of such design may enable superior vibration control as well. Proposed configurations can be made isovolumic and iso-weight giving designers a fairer ground of applying such configurations without significantly changing size and weight criteria.
Resumo:
The use of sustainability indicators for evaluating sanitation systems is applied to the Erdos Eco- Town Project (EETP) in China for illustration. The EETP is the largest urban settlement in the world employing ecological sanitation, which incorporates separation of waste streams, dry toilets, and resource recovery. The EETP’s dry sanitation system is compared against the Dongsheng District’s conventional sewer and centralised STP. The two systems are compared based on technological, environmental, economic, and societal indicators. Overall, the two systems perform reasonably well from a technological perspective. The conventional system performs significantly better than the dry system with regards to land and energy requirements, and global warming potential; it also performs better based on freshwater aquatic and terrestrial ecotoxicity potentials, but by a smaller margin. The dry system has superior environmental performance based on water consumption, eutrophication potential, and nutrient and organic matter recovery. The dry system is a more costly system as it requires greater infrastructure and higher operational costs, and does not benefit from economies of scale. The waterborne system performs better based on the societal indicators largely because it is a well-established system.
Resumo:
Contributed to: "Measuring the Changes": 13th FIG International Symposium on Deformation Measurements and Analysis; 4th IAG Symposium on Geodesy for Geotechnical and Structural Enginering (Lisbon, Portugal, May 12-15, 2008).
Resumo:
La problemática de las emisiones de gases contaminados generadas por las actividades humanas ha obligado al desarrollo de distintas tecnologías de tratamiento cuyo objetivo es minimizar el efecto de las mismas sobre el medio ambiente.La biofiltración es una de estas tecnologías de bajo coste que además es respetuosa con el entorno. Básicamente consiste en hacer pasar un gas contaminado a través de un medio poroso donde anida la biomasa que lleva a cabo la degradación de los contaminantes, generando productos no nocivos. El presente estudio se ha centrado en aportar soluciones a una de las principales limitaciones que presentan estos sistemas biológicos: el excesivo tiempo empleado por la biomasa para adaptarse a los contaminantes y degradarlos eficazmente.Se ha desarrollado una sistemática de aclimatación que ha permitido acortar el tiempo de adaptación de la biomasa específica para la eliminación de compuestos orgánicos volátiles (COVs). Estos compuestos, más específicamente los TEX (tolueno, p-xileno y etilbenceno), son uno de los grupos de contaminantes más habituales a nivel industrial, e incluso en ambientes interiores. La optimización de los parámetros de operación que afectan a esta tecnología (el nivel de humedad del soporte, temperatura, la interacción de varios contaminantes presentes en la misma corriente gaseosa, entre otros), ha llevado a la consecución de eficacias de depuración muy elevadas en el biotratamiento en continuo de corrientes gaseosas contaminadas.