953 resultados para chitin binding activity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In view of the reported inflammatory effects of corticotrophin-releasing factor (CRF) and the associated regulatory elements in the gene of its binding protein (BP), we postulate that both BP as well as novel BP-ligands other than CRF may be involved in inflammatory disease. We have investigated BP in the blood of patients with arthritis and septicaemia and have attempted to identify CRF and other BP-ligands in synovial fluid. The BP was found to be significantly elevated in the blood of patients with rheumatoid arthritis and septicaemia. There was less BP-ligand and CRF in synovial fluid from patients with rheumatoid arthritis that from those with osteo- or psoriatic arthritis. There was at least 10-fold more BP-ligand than CRF in the fluid of all three groups of patients. A small amount of immunoreactive human (h)CRF, eluting in the expected position of CRF-41, was detected after high-pressure liquid chromatography of arthritic synovial fluid; however, the bulk of material with BP-ligand binding activity eluted earlier, suggesting that synovial fluid contained novel peptides that interacted with the BP. These results would suggest that the BP and its ligands could play an endocrine immunomodulatory role in inflammatory disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With many cancers showing resistance to current chemotherapies, the search for novel anti-cancer agents is attracting considerable attention. Natural flavonoids have been identified as useful leads in such programmes. However, since an in-depth understanding of the structural requirements for optimum activity is generally lacking, further research is required before the full potential of flavonoids as anti-proliferative agents can be realised. Herein a broad library of 76 methoxy and hydroxy flavones, and their 4-thio analogues, was constructed and their structure-activity relationships for anti-proliferative activity against the breast cancer cell lines MCF-7 (ER+ve), MCF-7/DX (ER+ve, anthracycline resistant) and MDA-MB-231 (ER-ve) were probed. Within this library, 42 compounds were novel, and all compounds were afforded in good yields and > 95% purity. The most promising lead compounds, specifically the novel hydroxy 4-thioflavones 15f and 16f, were further evaluated for their anti-proliferative activities against a broader range of cancer cell lines by the National Cancer Institute (NCI), USA and displayed significant growth inhibition profiles (e.g Compound-15f: MCF-7 (GI50 = 0.18 μM), T-47D (GI50 = 0.03 μM) and MDA-MB-468 (GI50 = 0.47 μM) and compound-16f: MCF-7 (GI50 = 1.46 μM), T-47D (GI50 = 1.27 μM) and MDA-MB-231 (GI50 = 1.81 μM). Overall, 15f and 16f exhibited 7-46 fold greater anti-proliferative potency than the natural flavone chrysin (2d). A systematic structure-activity relationship study against the breast cancer cell lines highlighted that free hydroxyl groups and the B-ring phenyl groups were essential for enhanced anti-proliferative activities. Substitution of the 4-C=O functionality with a 4-C=S functionality, and incorporation of electron withdrawing groups at C4’ of the B-ring phenyl, also enhanced activity. Molecular docking and mechanistic studies suggest that the anti-proliferative effects of flavones 15f and 16f are mediated via ER-independent cleavage of PARP and downregulation of GSK-3β for MCF-7 and MCF-7/DX cell lines. For the MDA-MB-231 cell line, restoration of the wild-type p53 DNA binding activity of mutant p53 tumour suppressor gene was indicated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different species of Leishmania can cause a variety of medically important diseases, whose control and treatment are still health problems. Telomere binding proteins (TBPs) have potential as targets for anti-parasitic chemotherapy because of their importance for genome stability and cell viability. Here, we describe LaTBP1 a protein that has a Myb-like DNA-binding domain, a feature shared by most double-stranded telomeric proteins. Binding assays using full-length and truncated LaTBP1 combined with spectroscopy analysis were used to map the boundaries of the Myb-like domain near to the protein only tryptophan residue. The Myb-like domain of LaTBP1 contains a conserved hydrophobic cavity implicated in DNA-binding activity. A hypothetical model helped to visualize that it shares structural homology with domains of other Myb-containing proteins. Competition assays and chromatin immunoprecipitation confirmed the specificity of LaTBP1 for telomeric and GT-rich DNAs, suggesting that LaTBP1 is a new TBP. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gene encoding glycogen synthase in Neurospora crassa (gsn) is transcriptionally down-regulated when mycelium is exposed to a heat shock from 30 to 45 degrees C. The gsn promoter has one stress response element (STRE) motif that is specifically bound by heat shock activated nuclear proteins. In this work, we used biochemical approaches together with mass spectrometric analysis to identify the proteins that bind to the STRE motif and could participate in the gsn transcription regulation during heat shock. Crude nuclear extract of heat-shocked mycelium was prepared and fractionated by affinity chromatography. The fractions exhibiting DNA-binding activity were identified by electrophoretic mobility shift assay (EMSA) using as probe a DNA fragment containing the STRE motif DNA-protein binding activity was confirmed by Southwestern analysis. The molecular mass (MM) of proteins was estimated by fractionating the crude nuclear extract by SDS-PAGE followed by EMSA analysis of the proteins corresponding to different MM intervals. Binding activity was detected at the 30-50 MM kDa interval. Fractionation of the crude nuclear proteins by IEF followed by EMSA analysis led to the identification of two active fractions belonging to the pIs intervals 3.54-4.08 and 6.77-7.31. The proteins comprising the MM and pI intervals previously identified were excised from a 2-DE gel, and subjected to mass spectrometric analysis (MALDI-TOF/TOF) after tryptic digestion. The proteins were identified by search against the MIPS and MIT N. crassa databases and five promising candidates were identified. Their structural characteristics and putative roles in the gsn transcription regulation are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signaling molecules of the Wnt gene family are involved in the regulation of dorso-ventral, segmental and tissue polarity in Xenopus and Drosophila embryos. Members of the frizzled gene family, such as Drosophila frizzled-2 and rat frizzled-1, have been shown encode Wnt binding activity and to engage intracellular signal transduction molecules known to be part of the Wnt signaling pathway. Here we describe the cloning and characterization of Fritz, a mouse (mfiz) and human (hfiz) gene which codes for a secreted protein that is structurally related to the extracellular portion of the frizzled genes from Drosophila and vertebrates. The Fritz protein antagonizes Wnt function when both proteins are ectopically expressed in Xenopus embryos. In early gastrulation, mouse fiz mRNA is expressed in all three germ layers. Later in embryogenesis fiz mRNA is found in the central and peripheral nervous systems, nephrogenic mesenchyme and several other tissues, all of which are sites where Wnt proteins have been implicated in tissue patterning. We propose a model in which Fritz can interfere with the activity of Wnt proteins via their cognate frizzled receptors and thereby modulate the biological responses to Wnt activity in a multitude of tissue sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^