757 resultados para children, family, parental multiple sclerosis, adjustment, caregiving, attachment
Resumo:
Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13–14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.
Resumo:
Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.
Resumo:
To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).
Resumo:
Background Chaperonin 10 (Cpn10) is a mitochondrial molecule involved in protein folding. The aim of this study was to determine the safety profile of Cpn10 in patients with multiple sclerosis (MS). Methods A total of 50 patients with relapse-remitting or secondary progressive MS were intravenously administered 5 mg or 10 mg of Cpn10 weekly for 12 weeks in a double-blind, randomized, placebo controlled, phase II trial. Clinical reviews, including Expanded Disability Status Scale and magnetic resonance imaging (MRI) with Gadolinium, were undertaken every 4 weeks. Stimulation of patient peripheral blood mononuclear cells with lipopolysaccharide ex vivo was used to measure the in vivo activity of Cpn10. Results No significant differences in the frequency of adverse events were seen between treatment and placebo arms. Leukocytes from both groups of Cpn10-treated patients produced significantly lower levels of critical proinflammatory cytokines. A trend toward improvement in new Gadolinium enhancing lesions on MRI was observed, but this difference was not statistically significant. No differences in clinical outcome measures were seen. Conclusions Cpn10 is safe and well tolerated when administered to patients with MS for 3 months, however, a further extended phase II study primarily focused on efficacy is warranted.
Resumo:
OBJECTIVE: To examine a polymorphism within the 3' untranslated region of the leukemia inhibitory factor gene for an association with multiple sclerosis within an Australian case-control population. METHODS: A test group of 121 unrelated multiple sclerosis patients, of Caucasian origin, and 121 controls, matched for ethnicity, sex and age (+/-5 years) were included in the study. The LIF 3' UTR StuI polymorphism was genotyped by restriction fragment length polymorphism analysis. Statistical analysis of genotype and allele frequencies included Hardy-Weinberg law and conventional contingency table analysis incorporating the standard chi-squared test for independence. RESULTS: Allelic and genotype frequencies did not demonstrate a significant association between the case and control groups for the tested LIF 3' UTR StuI polymorphism. CONCLUSION: The results indicate that the LIF 3' UTR StuI polymorphism is not associated with multiple sclerosis, however we cannot exclude the hypothesis that other polymorphic alleles of LIF could be implicated in MS susceptibility.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.
Resumo:
Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.
Resumo:
In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting most commonly the Caucasian population. Nitric oxide (NO) is a biological signaling and effector molecule and is especially important during inflammation. Inducible nitric oxide synthase (iNOS) is one of the three enzymes responsible for generating NO. It has been reported that there is an excessive production of NO in MS concordant with an increased expression of iNOS in MS lesions. This study investigated the role of a bi-allelic tetranucleotide polymorphism located in the promoter region of the human iNOS (NOS2A) gene in MS susceptibility. A group of MS patients (n = 101) were genotyped and compared to an age- and sex-matched group of healthy controls (n = 101). The MS group was subdivided into three subtypes, namely relapsing-remitting MS (RR-MS), secondary-progressive MS (SP-MS) and primary-progressive MS (PP-MS). Results of a chi-squared analysis and a Fisher's exact test revealed that allele and genotype distributions between cases and controls were not significantly different for the total population (chi(2) = 3.4, P(genotype) = 0.15; chi(2) = 3.4, P(allele) = 0.082) and for each subtype of MS (P > 0.05). This suggests that there is no direct association of this iNOS gene variant with MS susceptibility.
Resumo:
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Resumo:
Background Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently. Methods We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments. Results Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively). Conclusion Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.
Resumo:
Human leucocyte antigen (HLA)-DRB1*1501 and other class II alleles influence susceptibility to multiple sclerosis (MS), but their contribution if any to the clinical course of MS remains uncertain. Here, we have investigated DRB1 alleles in a large sample of 1230 Australian MS cases, with some enrichment for subjects with primary progressive (PPMS) disease (n = 246) and 1210 healthy controls. Using logistic regression, we found that DRB1*1501 was strongly associated with risk (P = 7 x 10-45), as expected, and after adjusting for DRB1*1501, a predisposing effect was also observed for DRB1*03 (P = 5 x 10-7). Individuals homozygous for either DRB1*15 or DRB1*03 were considerably more at risk of MS than heterozygotes and non-carriers. Both the DRB1*04 and the DRB1*01/DRB1*15 genotype combination, respectively, protected against PPMS in comparison to subjects with relapsing disease. Together, these data provide further evidence of heterogeneity at the DRB1 locus and confirm the importance of HLA variants in the phenotypic expression of MS.
Resumo:
The study described in this article aimed to identify issues relating to incontinence and assess the impact of referral to a continence adviser on the lives of people with multiple sclerosis (MS). The study design used an in-depth, two-phase anonymous mail survey within a general community as nominated by the participants. Fifty-six people participated in phase 1 and eleven people completed phase 2. The results indicated that incontinence is a problem for the vast majority of participants — people with MS. One-third of the eligible participants took up the option of a consultation, assessment and treatment from a continence nurse. Reasons for not taking up the visit from the continence nurse included ‘managing OK’, ‘didn’t think it would help’, ‘embarrassed’ and ‘too busy’. Increasing awareness of urinary incontinence in the community is important and education needs to focus on at-risk groups in presenting the range of options available to assist people experiencing incontinence.