977 resultados para cell strain L929
Resumo:
Avian Pathogenic Escherichia coli (APEC) strains are extra-intestinal E. coli that infect poultry and cause diseases. Nitrite is a central branch-point in bacterial nitrogen metabolism and is used as a cytotoxin by macrophages. Unlike nitric oxide (NO), nitrite cannot diffuse across bacterial membrane cells. The NirC protein acts as a specific channel to facilitate the transport of nitrite into Salmonella and E. coli cells for nitrogen metabolism and cytoplasmic detoxification. NirC is also required for the pathogenicity of Salmonella by downregulating the production of NO by the host macrophages. Based on an in vitro microarray that revealed the overexpression of the nirC gene in APEC strain SCI-07, we constructed a nirC-deficient SCI-07 strain (ΔnirC) and evaluated its virulence potential using in vivo and in vitro assays. The final cumulative mortalities caused by mutant and wild-type (WT) were similar; while the ΔnirC caused a gradual increase in the mortality rate during the seven days recorded, the WT caused mortality up to 24h post-infection (hpi). Counts of the ΔnirC cells in the spleen, lung and liver were higher than those of the WT after 48 hpi but similar at 24 hpi. Although similar number of ΔnirC and WT cells was observed in macrophages at 3 hpi, there was higher number of ΔnirC cells at 16 hpi. The cell adhesion ability of the ΔnirC strain was about half the WT level in the presence and absence of alpha-D-mannopyranoside. These results indicate that the nirC gene influences the pathogenicity of SCI-07 strain.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
The ability of a recently isolated Scheffersomyces stipitis strain (UFMG-IMH 43.2) to produce ethanol from xylose was evaluated. For the assays, a hemicellulosic hydrolysate produced by dilute acid hydrolysis of sugarcane bagasse was used as the fermentation medium. Initially, the necessity of adding nutrients (MgSO(4).7H(2)O, yeast extract and/or urea) to this medium was verified, and the yeast extract supplementation favoured ethanol production by the yeast. Then, in a second stage, assays under different initial xylose and cell concentrations, supplemented or not with yeast extract, were performed. All these three variables showed significant (p < 0.05) influence on ethanol production. The best results (ethanol yield and productivity of 0.19 g/g and 0.13 g/l/h, respectively) were obtained using the hydrolysate containing an initial xylose concentration of 30 g/l, supplemented with 5.0 g/l yeast extract and inoculated with an initial cell concentration of 2.0 g/l. S. stipitis UFMG-IMH 43.2 was demonstrated to be a yeast strain with potential for use in xylose conversion to ethanol. The establishment of the best fermentation conditions was also proved to be of great importance to increasing the product formation by this yeast strain. These findings open up new perspectives for the establishment of a feasible technology for ethanol production from hemicellulosic hydrolysates. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.
Resumo:
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Resumo:
This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.
Resumo:
Saccharomyces cerevisiae has been used in genotoxicity and cytotoxicity assays for several years before the Ames Test approach. However the cell permeability of yeast has been considered a limitant factor to this kind of assay and many researchers have been introducing genetic modifications into wild strains to improve the sensitivity to chemical compounds. In our study, we used Saccharomyces cerevisiae ATCC 9763, well known and very common strain in antibiotic assays, and we evaluated the cytotoxicity of some antineoplastic agents (etoposide, epirubicin, carboplatin, cisplatin and mitoxantrone). Each culture was observed under the light of microscope and photographed. Neither genetic modification nor addition of permeation inducers, as dimethylsulfoxide (DMSO), were introduced during the assays and the cells presented good sensitivity to those compounds, demonstrating that other potential strains and characteristics of cells should be reconsidered to improve these assays apart from the cellular permeability.
Resumo:
Gonadal steroids exert an important influence on the host immune response during infection. Changes resulting from the absence or replacement of gonadal hormones may represent a distinct evolution of a particular parasite. Taking into account the greater susceptibility of males to parasites, the magnitude of the immune response seems to depend on the interaction of many hormones that will act synergistically with other immune cells. The aims of this research were to evaluate the effects of the luck of male sex hormones due to orchiectomy, and the influence of oral administration of melatonin on the immune response of male Wistar rats infected with the Y strain of Trypanosoma cruzi. The percentage of CD3(+) CD4(+) and CD3(+) CD8(+) lymphocyte T cell subsets were evaluated using flow cytometry and the measurement of IL-2 and IL-12. For all parameters examined, a synergistic action of melatonin and orchiectomy on the host`s immune response was observed, promoting an effective response against the parasite during the acute phase of infection. These results offer insight into other possibilities for possibly controlling T. cruzi proliferation through melatonin therapy and also the stimulatory effects on host`s immune response triggered by the absence of male gonadal steroids during the acute phase of infection.
Resumo:
A continuous cell line, Aa23, was established from eggs of a strain of the Asian tiger mosquito, Aedes albopictus, naturally infected with the intracellular symbiont Wolbachia pipientis. The resulting cell line was shown to be persistently infected with the bacterial endosymbiont. Treatment with antibiotics cured the cells of the infection. In the course of establishing this cell line it was noticed that RFLPs in the PCR products of two Wolbachia genes from the parental mosquitoes were fixed in the infected cell line. This indicates that the mosquito host was naturally superinfected with different Wolbachia strains, whereas the infected cell line derived from these mosquitoes only contained one of the original Wolbachia strains. The development of anin vitroculture system for this fastidious microorganism should facilitate molecular analysis of the reproduction distorting phenotypes it induces in natural arthropod hosts.
Resumo:
The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
The study analyzed the effects of chronic alcohol ingestion on the ultrastructure of the lining epithelium of the hard palatine mucosa of rats UChA and UChB (lines with voluntary alcohol consumption) in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the digestive system. Thirty female adult animals aged 120 days were divided into three experimental groups. (1) Ten UChA rats (genetically low ethanol consumer) with voluntary intake of 10% v/v (5.45 g/kg/day) ethanol solution and water. (2) Ten UChB (genetically high ethanol consumer) rats with voluntary intake of 10% v/v (7.16 g/kg/day) ethanol solution and water. (3) Ten Wistar rats with voluntary ad libitum water intake (control group). Both groups received Nuvital pellets ad libitum. The IGFR-I expression was intense in both experimental groups. The epithelial cells of the alcoholic rats UChA and UChB showed many alterations such as the presence of lipid droplets, altered nuclei, nuclei in corneum layer and disrupted mitochondria. It was concluded that ethanol intake induces ultrastructural lesions in the hard palatine mucosa. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Susceptibility to periodontal infections may, in part, be genetically determined. Porphyromonas gingivalis is a major periodontopathogen, and the immune response to this organism requires T-cell help. The aim of the present study was to examine the specific T-cell cytokine responses to P gingivalis outer membrane antigens in a mouse model and their relationship with H-2 haplotype. Methods: BALB/c and DBA/2J (H-2(d)), CBACaH (H-2(k)), and C57BL6 (H-2(b)) mice were immunized with P gingivalis outer membrane antigens weekly for 3 weeks. One week after the final injection, the spleens were removed, and 6 T-cell lines specific for P gingivalis were established for each mouse strain. The percentage of CD4 and CD8 cells in the P gingivalis-specific T-cell lines staining positive for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma, and IL-10 was determined by 2-color flow cytometry. Results: The cytokine profiles of T-cell lines from BALB/c and DBA/2J mice showed no significant differences. Significantly fewer IL4+, IFN-gamma+, and IL-10+ CD4 cells than IL-4+, IFN-gamma+, and IL-10+ CD8 cells, respectively, were demonstrated for both strains. P gingivalis-specific T-cell lines generated from CBACaH mice were similar to those generated from BALB/c and DBA/2J mice; however, the mean percentage of IL4+ CD4 cells in CBACaH mice was lower than the percentage of IFN-gamma+ CD4 cells. Also, the mean percentage of IFN-gamma+ CD4 cells in CBACaH mice was significantly increased compared to DBA/2J mice. Unlike the other 3 strains, T-cell lines established from C57BL6 mice contained similar percentages of cytokine-positive cells, although the percentage of IL-4+ CD4 cells was reduced in comparison to the percentage of CD8 cells. However, comparisons with the other 3 strains demonstrated a higher percentage of IL-4+ CD4 cells than in lines established from the spleens of DBA/2J mice, IFN-gamma+ CD4 cells than in lines established from BALB/c and CBACaH mice, and IL-10+ CD4 cells than in lines established from all 3 other strains. No significant differences in the percentage of positive CD8 cells were demonstrated between lines in the 4 strains of mice. Conclusion: The specific T-cell response to P gingivalis in mice may, in the case of the CD4 response, depend on MHC genes. These findings are consistent with the concept that patient susceptibility is important to the outcome of periodontal infection and may, in part, be genetically determined.