983 resultados para catheter ablation
Resumo:
BACKGROUND Arrhythmia origin in close proximity to the phrenic nerve (PN) can hinder successful catheter ablation. We describe our approach with epicardial PN displacement in such instances. METHODS AND RESULTS PN displacement via percutaneous pericardial access was attempted in 13 patients (age 49±16 years, 9 females) with either atrial tachycardia (6 patients) or atrial fibrillation triggered from a superior vena cava focus (1 patient) adjacent to the right PN or epicardial ventricular tachycardia origin adjacent to the left PN (6 patients). An epicardially placed steerable sheath/4 mm-catheter combination (5 patients) or a vascular or an esophageal balloon (8 patients) was ultimately successful. Balloon placement was often difficult requiring manipulation via a steerable sheath. In 2 ventricular tachycardia cases, absence of PN capture was achieved only once the balloon was directly over the ablation catheter. In 3 atrial tachycardia patients, PN displacement was not possible with a balloon; however, a steerable sheath/catheter combination was ultimately successful. PN displacement allowed acute abolishment of all targeted arrhythmias. No PN injury occurred acutely or in follow up. Two patients developed acute complications (pleuro-pericardial fistula 1 and pericardial bleeding 1). Survival free of target arrhythmia was achieved in all atrial tachycardia patients; however, a nontargeted ventricular tachycardia recurred in 1 patient at a median of 13 months' follow up. CONCLUSIONS Arrhythmias originating in close proximity to the PN can be targeted successfully with PN displacement with an epicardially placed steerable sheath/catheter combination, or balloon, but this strategy can be difficult to implement. Better tools for phrenic nerve protection are desirable.
Resumo:
BACKGROUND Ventricular tachycardia (VT) refractory to antiarrhythmic drugs and standard percutaneous catheter ablation techniques portends a poor prognosis. We characterized the reasons for ablation failure and describe alternative interventional procedures in this high-risk group. METHODS AND RESULTS Sixty-seven patients with VT refractory to 4±2 antiarrhythmic drugs and 2±1 previous endocardial/epicardial catheter ablation attempts underwent transcoronary ethanol ablation, surgical epicardial window (Epi-window), or surgical cryoablation (OR-Cryo; age, 62±11 years; VT storm in 52%). Failure of endo/epicardial ablation attempts was because of VT of intramural origin (35 patients), nonendocardial origin with prohibitive epicardial access because of pericardial adhesions (16), and anatomic barriers to ablation (8). In 8 patients, VT was of nonendocardial origin with a coexisting condition also requiring cardiac surgery. Transcoronary ethanol ablation alone was attempted in 37 patients, OR-Cryo alone in 21 patients, and a combination of transcoronary ethanol ablation and OR-Cryo (5 patients), or transcoronary ethanol ablation and Epi-window (4 patients), in the remainder. Overall, alternative interventional procedures abolished ≥1 inducible VT and terminated storm in 69% and 74% of patients, respectively, although 25% of patients had at least 1 complication. By 6 months post procedures, there was a significant reduction in defibrillator shocks (from a median of 8 per month to 1; P<0.001) and antiarrhythmic drug requirement although 55% of patients had at least 1 VT recurrence, and mortality was 17%. CONCLUSIONS A collaborative strategy of alternative interventional procedures offers the possibility of achieving arrhythmia control in high-risk patients with VT that is otherwise uncontrollable with antiarrhythmic drugs and standard percutaneous catheter ablation techniques.
Resumo:
Permanent destruction of abnormal cardiac tissue responsible for cardiac arrhythmogenesis whilst avoiding collateral tissue injury forms the cornerstone of catheter ablation therapy. As the acceptance and performance of catheter ablation increases worldwide, limitations in current technology are becoming increasingly apparent in the treatment of complex arrhythmias such as atrial fibrillation. This review will discuss the role of new technologies aimed to improve lesion formation with the ultimate goal of improving arrhythmia-free survival of patients undergoing catheter ablation of atrial arrhythmias.
Resumo:
BACKGROUND Long-term outcomes following ventricular tachycardia (VT) ablation are sparsely described. OBJECTIVES To describe long term prognosis following VT ablation in patients with no structural heart disease (no SHD), ischemic (ICM) and non-ischemic cardiomyopathy (NICM). METHODS Consecutive patients (n=695; no SHD 98, ICM 358, NICM 239 patients) ablated for sustained VT were followed for a median of 6 years. Acute procedural parameters (complete success [non-inducibility of any VT]) and outcomes after multiple procedures were reported. RESULTS Compared with patients with no SHD or NICM, ICM patients were the oldest, had more males, lowest left ventricular ejection fraction (LVEF), highest drug failures, VT storms and number of inducible VTs. Complete procedure success was highest in no SHD, compared ICM and NICM patients (79%, 56%, 60% respectively, P<0.001). At 6 years, ventricular arrhythmia (VA)-free survival was highest in no SHD (77%) than ICM (54%) and NICM (38%, P<0.001) and overall survival was lowest in ICM (48%), followed by NICM (74%) and no SHD patients (100%, P<0.001). Age, LVEF, presence of SHD, acute procedural success (non-inducibility of any VT), major complications, need for non-radiofrequency ablation modalities, and VA recurrence were independently associated with all cause mortality. CONCLUSIONS Long term follow up following VT ablation shows excellent prognosis in the absence of SHD, highest VA recurrence and transplantation in NICM and highest mortality in patients with ICM. The extremely low mortality for those without SHD suggests that VT in this population is very rarely an initial presentation of a myopathic process.
Resumo:
The rapid development of interventional procedures for the treatment of arrhythmias in humans, especially the use of catheter ablation techniques, has renewed interest in cardiac anatomy. Although the substrates of atrial fibrillation (AF), its initiation and maintenance, remain to be fully elucidated, catheter ablation in the left atrium (LA) has become a common therapeutic option for patients with this arrhythmia. Using ablation catheters, various isolation lines and focal targets are created, the majority of which are based on gross anatomical, electroanatomical, and myoarchitectual patterns of the left atrial wall. Our aim was therefore to review the gross morphological and architectural features of the LA and their relations to extracardiac structures. The latter have also become relevant because extracardiac complications of AF ablation can occur, due to injuries to the phrenic and vagal plexus nerves, adjacent coronary arteries, or the esophageal wall causing devastating consequences.
Resumo:
Gastric Palsy Following AF Vagal Ablation. We report a case of a 55-year-old man with vagal paroxysmal atrial fibrillation (AF) who was submitted to selective epicardial and endocardial atrial vagal denervation with the objective of treating AF. Radiofrequency pulses were applied on epicardial and endocardial surface of the left atrium close to right pulmonary veins (PVs) and also on epicardial surface close to left inferior PV. Following the procedure, patient presented with symptoms of gastroparesis, which was documented on CT scan and gastric emptying scintigraphy. Symptoms were transient and the patient recovered completely.
Management of posterior atrial wall perforation during transseptal approach for left atrium ablation
Resumo:
Background-Puncture of the atrial appendage may provide access to the pericardial space. The aim of this study was to evaluate the feasibility of epicardial mapping and ablation through an endocardial transatrial access in a swine model. Methods and Results-An 8-F Mullins sheath was used to perforate the right (n=16) or left (n=1) atrial appendage in 17 pigs (median weight, 27.5 kg; first and third quartiles [Q1, Q3], 25.2, 30.0 kg). A 7-F ablation catheter was introduced into the pericardial space to perform epicardial mapping and deliver radiofrequency pulses on the atria. The pericardial space was entered in all 17 animals. In 15 (88%) animals, there was no hemodynamic instability (mean blood pressure monitoring, initial median, 80 mm Hg; Q1, Q3, 70, 86 mm Hg; final median, 88 mm Hg; Q1, Q3, 80, 96 mm Hg; P=0.426). In these 15, a mild hemorrhagic pericardial effusion was identified and aspirated (median, 20 mL; Q1, Q3, 15, 30 mL) during the procedure, and postmortem gross analysis revealed that the atrial perforation was closed in these animals. In 2 (12%) of the 17 animals, there was major pericardial bleeding with hemodynamic collapse. On gross examination, it was found that pericardial space was accessed through right ventricular perforation in 1 animal and the tricuspid annulus in the other. After the initial study, we used an occlusion device in 3 other animals to attempt to seal the puncture (2 at the right atrial appendage and 1 at the right ventricle). These 3 animals had no significant pericardial bleeding. Conclusions-Transatrial endovascular right atrial appendage puncture may provide a potential alternative route for pericardial access. Further studies are needed to evaluate its safety with longer and more-complex procedures before being applied in clinical settings. (Circ Arrhythm Electrophysiol. 2011;4:331-336.)
Resumo:
Background: This study of a chronic porcine postinfarction model examined whether linear epicardial cryoablation was capable of creating large, homogenous lesions in regions of the myocardium including scarred ventricle. Endocardial and epicardial focal cryolesions were also compared to determine if there were significant differences in lesion characteristics. Methods: Eighty focal endocardial and 28 focal epicardial cryoapplications were delivered to eight normal caprine and four normal porcine ventricular myocardium, and 21 linear cryolesions were applied along the border of infarcted epicardial tissue in a chronic porcine infarct model in six swines. Results: Focal endocardial cryolesions in normal animals measured 9.7 +/- 0.4 mm (length) by 7.3 +/- 1.4 mm (width) by 4.8 +/- 0.2 mm (depth), while epicardial lesions measured 10.2 +/- 1.4 mm (length) by 7.7 +/- 2 mm (width) by 4.6 +/- 0.9 mm (depth); P > 0.05. Linear epicardial cryolesions in the chronic porcine infarct model measured 36.5 +/- 7.8 mm (length) by 8.2 +/- 1.3 mm (width) by 6.0 +/- 1.2 mm (depth). The mean depth of linear cryolesions applied to the border of the infarct scar was 7 +/- 0.7 mm, as measured by magnetic resonance imaging. Conclusions:Cryoablation can create deep lesions when delivered to the ventricular epicardium. Endocardial and epicardial cryolesions created by a focal cryoablation catheter are similar in size and depth. The ability to rapidly create deep linear cryolesions may prove to be beneficial in substrate-based catheter ablation of ventricular arrhythmias.
Resumo:
Catheter ablation is an established treatment option for symptomatic atrial fibrillation (AF), with circumferential pulmonary vein isolation being considered the cornerstone of the procedure. However, this is a complex intervention with potential major complications and with common arrhythmia recurrences. There is consensus among experts that all patients should be seen in follow-up regularly after AF ablation. To date there are limited data regarding the best methodology for routine clinical follow-up of this population. This review summarizes a contemporary insight into management of late complications following AF ablation, post-procedural anticoagulation and arrhythmia monitoring strategies, in order to prevent thromboembolic events, detect and treat arrhythmia recurrences, and discuss the use of upstream therapies after AF ablation.
Resumo:
OBJECTIVE: To demonstrate the feasibility and safety of simultaneous catheterization and mapping of the 4 pulmonary veins for ablation of atrial fibrillation. METHODS: Ten patients, 8 with paroxysmal atrial fibrillation and 2 with persistent atrial fibrillation, refractory to at least 2 antiarrhythmic drugs and without structural cardiopathy, were consecutively studied. Through the transseptal insertion of 2 long sheaths, 4 pulmonary veins were simultaneously catheterized with octapolar microcatheters. After identification of arrhythmogenic foci radiofrequency was applied under angiographic or ultrasonographic control. RESULTS: During 17 procedures, 40 pulmonary veins were mapped, 16 of which had local ectopic activity, related or not with the triggering of atrial fibrillation paroxysms. At the end of each procedure, suppression of arrhythmias was obtained in 8 patients, and elimination of pulmonary vein potentials was accomplished in 4. During the clinical follow-up of 9.6±3 months, 7 patients remained in sinus rhythm, 5 of whom were using antiarrhythmic drugs that had previously been ineffective. None of the patients had pulmonary hypertension or evidence of stenosis in the pulmonary veins. CONCLUSION: Selective and simultaneous catheterization of the 4 pulmonary veins with microcatheters for simultaneous recording of their electrical activity is a feasible and safe procedure that may help ablation of atrial fibrillation.