982 resultados para carrying
Resumo:
In concentrated contacts the behaviour of lubricants is much modified by the high local pressures: changes can arise both from molecular ordering within the very thin film lubricant layers present at the interface as well as from the deposition on the component surfaces of more solid-like polymeric boundary layers. These 'third bodies' separating the solid surfaces may have rheological or mechanical properties very different from those observed in the bulk. Classical elasto-hydrodynamic theory considers the entrapped lubricant to exhibit a piezo-viscous behaviour while the conventional picture of more solid boundary lubricant layers views their shear strength r as being linearly dependent on local pressure p, so that T = TO + ap where TO and a are constants. If TO is relatively small, then the coefficient of friction \i = T Ip ~ a and so Amonton's laws are recovered. However, the properties of adsorbed or deposited surface films, or indeed other third bodies such as debris layers, may be more complex than this. A preliminary study has looked quantitatively at the influence of the pressure dependence of the shear strength of any surface layer on the overall friction coefficient of a contact which is made up of an array of asperities whose height varies in a Gaussian manner. Individual contact points may be elastic or plastic. The analysis results in plots of coefficient of friction versus the service or load parameter PIH&NRa where P is the nominal pressure on the contact, HS the hardness of the deforming surface, N the asperity density, R the mean radius of curvature of the asperities, and a is the standard deviation of their height distribution. In principle, any variation oft withp can be incorporated into the model; however, in this initial study we have used data on colloidal suspensions from the group at the Ecole Centrale de Lyon as well as examining the effect of functional relationships of somewhat greater complexity than a simple linear form. Results of the analysis indicate that variations in fj. are possible as the load is varied which depend on the statistical spread of behaviour at individual asperity contacts. The value of this analysis is that it attempts to combine the behaviour of films on the molecular scale with the topography of real engineering surfaces and so give an indication of the effects at the full-size or macro-scale that can be achieved by chemical or molecular surface engineering.
Resumo:
Echolocation click events of a free-ranging juvenile and an adult finless porpoise (Neophocaena phocaenoides) were recorded with an acoustic data logger. Additionally, dive depth and swim speed of the juvenile were recorded with a behavior data logger. Echoes of echolocation signals from the water surface were clearly detected in shallow dives approximately less than 2 m. The delay time between a surface echo and a direct signal corresponded with the two-way transmission time for the animal's depth, indicating that the signals originated from the animal wearing the data loggers. The finless porpoises produced echolocation signals frequently and were thought to be able to detect their depth by listening to echoes from the water surface. (C) 2000 Acoustical Society of America. [S0001-4966(00)01609-X].
Resumo:
The tight-binding (TB) approach to the modelling of electrical conduction in small structures is introduced. Different equivalent forms of the TB expression for the electrical current in a nanoscale junction are derived. The use of the formalism to calculate the current density and local potential is illustrated by model examples. A first-principles time-dependent TB formalism for calculating current-induced forces and the dynamical response of atoms is presented. An earlier expression for current-induced forces under steady-state conditions is generalized beyond local charge neutrality and beyond orthogonal TB. Future directions in the modelling of power dissipation and local heating in nanoscale conductors are discussed.
Resumo:
In the investigation of real loading capacities in concrete bridge deck slabs,the study of this type of structure was carried out with consideration of compressive membrane action.A series of experimental test of steel-concrete bridge structures was developed with the analysis of influences from the varying of structural parameters on loading capacities,including reinforcement percentages,supporting beam sizes and concrete compressive strength.Through the study of the experimental results,it was found that the real structural loading capacities are larger than those predicted by current design methods.Therefore,based on the previous research,a prediction method for loading capacities of concrete bridge deck slabs was established with consideration of CMA,which was built based on the plastic ultimate analysis.In this method,the lateral restraint stiffness subjected by concrete bridge deck slabs was provided.The proposed theoretical model is capable of predicting the loading capacities of this type of structure accurately with comparison of results from several bridge deck experimental tests.