983 resultados para autoregressive models


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho traz avaliação empírica a respeito do canal de crédito no Brasil, feita com base no artigo de Holtemöller (2002). Para tanto, foi feita análise descritiva sobre a evolução do crédito no país, bem como testes econométricos utilizando dados monetários, de crédito e economia real. Observamos o aumento da importância do crédito nos últimos anos, assim como o aumento do endividamento corporativo via emissão de títulos. Portanto, seria natural esperar que o canal de crédito no mecanismo de transmissão da política monetária também se tornasse mais importante. Contudo, a análise empírica mostra que seus efeitos sobre a atividade econômica são limitados. Após estimações feitas para o canal monetário tradicional, a partir de vetores autorregressivos estruturais (SVAR) com vetores de correção de erros (VEC), incluímos variáveis de crédito para avaliar o impacto sobre o produto. Apesar de concluirmos que choques de política monetária possuem efeitos sobre a oferta de crédito, o impacto de condições creditícias restritivas sobre a produção industrial é pequeno. Alguns fatores como a existência de crédito corporativo direcionado via BNDES, maior importância da captação via mercado de capitais, medidas macroprudenciais adotadas e aumento do prazo médio concorrem para esse resultado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main goal of this article is to identify the dynamic effects of fiscal policy on output in Brazil from 1997 to 2014, and, more specifically, to estimate those effects when the output falls below its potential level. To do so, we estimate VAR (vector autoregressive) models to generate impulse-response functions and causality/endogeneity tests. Our most remarkable results indicate the following channel of economic policy in Brazil: to foster output, government spending increases causing increases in both tax rates and revenue and the short-term interest rate. A fiscal stimulus via spending seems efficient for economic performance as well as monetary policy; however, the latter operates pro-cyclically in the way we defined here, while the former is predominantly countercyclical. As the monetary shock had a negative effect on GDP growth and GDP growth responded positively to the fiscal shock, it seems that the economic policy has given poise to growth with one hand and taken it with the other one. The monetary policy is only reacting to the fiscal stimuli. We were not able to find any statistically significant response of the output to tax changes, but vice versa seems work in the Brazilian case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este proyecto se van a aplicar las técnicas de análisis de ruido para caracterizar la respuesta dinámica de varios sensores de temperatura, tanto termorresistencias de platino como de termopares. Estos sensores son imprescindibles para él correcto funcionamiento de las centrales nucleares y requieren vigilancia para garantizar la exactitud de las medidas. Las técnicas de análisis de ruido son técnicas pasivas, es decir, no afectan a la operación de la planta y permiten realizar una vigilancia in situ de los sensores. Para el caso de los sensores de temperatura, dado que se pueden asimilar a sistemas de primer orden, el parámetro fundamental a vigilar es el tiempo de respuesta. Éste puede obtenerse para cada una de las sondas por medio de técnicas en el dominio de la frecuencia (análisis espectral) o por medio de técnicas en el dominio del tiempo (modelos autorregresivos). Además de la estimación del tiempo de respuesta, se realizará una caracterización estadística de las sondas. El objetivo es conocer el comportamiento de los sensores y vigilarlos de manera que se puedan diagnosticar las averías aunque éstas estén en una etapa incipiente. ABSTRACT In this project we use noise analysis technique to study the dynamic response of RTDs (Resistant temperature detectors) and thermocouples. These sensors are essential for the proper functioning of nuclear power plants and therefore need to be monitored to guarantee accurate measurements. The noise analysis techniques do not affect plant operation and allow in situ monitoring of the sensors. Temperature sensors are equivalent to first order systems. In these systems the main parameter to monitor is the response time which can be obtained by means of techniques in the frequency domain (spectral analysis) as well as time domain (autoregressive models). Besides response time estimation the project will also include a statistical study of the probes. The goal is to understand the behavior of the sensors and monitor them in order to detect any anomalies or malfunctions even if they occur in an early stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho tem por objetivo analisar o potencial de desenvolvimento do contrato futuro de soja no Brasil, por meio da atração de hedgers brasileiros e argentinos. Para tanto, faz-se necessário conhecer os padrões das conexões dos preços entre as regiões analisadas. Nesse sentido, o Capítulo 2 investigou a integração espacial do mercado físico de soja no Brasil (região de Sorriso, no Mato Grosso) e na Argentina (região de Rosário, na província de Santa Fé) e comparou ao grau de integração com os Estados Unidos. Foram empregados modelos autorregressivos com threshold (TAR e M-TAR) e modelos vetoriais de correção de erros, lineares e com threshold (VECM e TVECM), visando captar os efeitos dos custos de transação sobre a integração espacial entre essas regiões. Os resultados apontaram que o mercado de soja brasileiro, argentino e norte-americano são integrados, mesmo considerando-se os efeitos dos custos de transação sobre as decisões de arbitragem espacial. Consequentemente, os preços da soja no mercado internacional tendem a refletir o comportamento dos principais países produtores. Apesar disso, o tempo de transmissão de choques de preços mostrou-se, em geral, menor entre Brasil e Argentina, refletindo a proximidade geográfica. Apontou-se também o comportamento assimétrico da transmissão desses choques, uma vez que choques positivos sobre a relação de longo prazo tendem a ser mais persistentes que os negativos. Se o contrato futuro reflete o comportamento de preços de um único mercado físico integrado, deve-se então esperar que o risco de base seja menor para este mercado e, portanto, que a eficiência do hedge seja maior. No Capítulo 3, o objetivo se constituiu em verificar se há maior eficiência no hedge realizado com os contratos com vencimento em março na CME em relação à BM&FBOVESPA, considerando-se as relações de longo prazo entre os preços à vista e futuros, bem como a dinâmica na estrutura de covariâncias condicionais, por meio de modelos de correção de erros (VECM) e modelos de heterocedasticidade condicional generalizados com correlação condicional dinâmica (DCC-GARCH). Os resultados mostraram que, em geral, a introdução da dinâmica nos segundos momentos das distribuições dos erros tende a aumentar a eficiência da estratégia de hedge. Além disso, foi observado que os produtores de Sorriso tendem a obter melhores condições de hedge na CME, embora haja redução da variância ao se operar na BM&FBOVESPA. Por outro lado, a eficiência do hedge para os produtores de Rosário foi significativamente maior na BM&FBOVESPA do que na CME, o que indica o mercado potencial de hedgers argentinos para negociar o contrato futuro de soja local no Brasil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper compares the experience of forecasting the UK government bond yield curve before and after the dramatic lowering of short-term interest rates from October 2008. Out-of-sample forecasts for 1, 6 and 12 months are generated from each of a dynamic Nelson-Siegel model, autoregressive models for both yields and the principal components extracted from those yields, a slope regression and a random walk model. At short forecasting horizons, there is little difference in the performance of the models both prior to and after 2008. However, for medium- to longer-term horizons, the slope regression provided the best forecasts prior to 2008, while the recent experience of near-zero short interest rates coincides with a period of forecasting superiority for the autoregressive and dynamic Nelson-Siegel models. © 2014 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. We use non-linear, artificial intelligence techniques, namely, recurrent neural networks, evolution strategies and kernel methods in our forecasting experiment. In the experiment, these three methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. There is evidence in the literature that evolutionary methods can be used to evolve kernels hence our future work should combine the evolutionary and kernel methods to get the benefits of both.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regressiontechniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a nave random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists' long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies. © 2010 Elsevier B.V. All rights reserved.