993 resultados para automated testing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the retrieval of existing designs to prevent unnecessary duplication of parts is a recognised strategy in the control of design costs the available techniques to achieve this, even in product data management systems, are limited in performance or require large resources. A novel system has been developed based on a new version of an existing coding system (CAMAC) that allows automatic coding of engineering drawings and their subsequent retrieval using a drawing of the desired component as the input. The ability to find designs using a detail drawing rather than textual descriptions is a significant achievement in itself. Previous testing of the system has demonstrated this capability but if a means could be found to find parts from a simple sketch then its practical application would be much more effective. This paper describes the development and testing of such a search capability using a database of over 3000 engineering components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes some approaches to problem of testing and documenting automation in information systems with graphical user interface. Combination of data mining methods and theory of finite state machines is used for testing automation. Automated creation of software documentation is based on using metadata in documented system. Metadata is built on graph model. Described approaches improve performance and quality of testing and documenting processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Красимир Манев, Антон Желязков, Станимир Бойчев - В статията е представена имплементацията на последната фаза на автоматичен генератор на тестови данни за структурно тестване на софтуер, написан на обектно-ориентиран език за програмиране – генерирането на изходен код на тестващия модул. Някои детайли от имплементацията на останалите фази, които са важни за имплементацията на последната фаза, са представени първо. След това е описан и алгоритъмът за генериране на кода на тестващия модул.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. The purpose of this study is to examine the benefit of adding mfVEP hemifield Intersector analysis protocol to the standard HFA test when there is suspicious glaucomatous visual field loss. 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2, optical coherence tomography of the optic nerve head, and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. The retinal nerve fibre (RNFL) thickness was recorded to identify subjects with suspicious RNFL loss. The hemifield Intersector analysis of mfVEP results showed that signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the 3 groups (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 in glaucoma suspect group (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. The use of SAP and mfVEP results in subjects with suspicious glaucomatous visual field defects, identified by low RNFL thickness, is beneficial in confirming early visual field defects. The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol in addition to SAP analysis can provide information about focal visual field differences across the horizontal midline, and confirm suspicious field defects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. The Intersector analysis protocol can detect early field changes not detected by standard HFA test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores factors related to the prompt difficulty in Automated Essay Scoring. The sample was composed of 6,924 students. For each student, there were 1-4 essays, across 20 different writing prompts, for a total of 20,243 essays. E-rater® v.2 essay scoring engine developed by the Educational Testing Service was used to score the essays. The scoring engine employs a statistical model that incorporates 10 predictors associated with writing characteristics of which 8 were used. The Rasch partial credit analysis was applied to the scores to determine the difficulty levels of prompts. In addition, the scores were used as outcomes in the series of hierarchical linear models (HLM) in which students and prompts constituted the cross-classification levels. This methodology was used to explore the partitioning of the essay score variance.^ The results indicated significant differences in prompt difficulty levels due to genre. Descriptive prompts, as a group, were found to be more difficult than the persuasive prompts. In addition, the essay score variance was partitioned between students and prompts. The amount of the essay score variance that lies between prompts was found to be relatively small (4 to 7 percent). When the essay-level, student-level-and prompt-level predictors were included in the model, it was able to explain almost all variance that lies between prompts. Since in most high-stakes writing assessments only 1-2 prompts per students are used, the essay score variance that lies between prompts represents an undesirable or "noise" variation. Identifying factors associated with this "noise" variance may prove to be important for prompt writing and for constructing Automated Essay Scoring mechanisms for weighting prompt difficulty when assigning essay score.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge graphs and ontologies are closely related concepts in the field of knowledge representation. In recent years, knowledge graphs have gained increasing popularity and are serving as essential components in many knowledge engineering projects that view them as crucial to their success. The conceptual foundation of the knowledge graph is provided by ontologies. Ontology modeling is an iterative engineering process that consists of steps such as the elicitation and formalization of requirements, the development, testing, refactoring, and release of the ontology. The testing of the ontology is a crucial and occasionally overlooked step of the process due to the lack of integrated tools to support it. As a result of this gap in the state-of-the-art, the testing of the ontology is completed manually, which requires a considerable amount of time and effort from the ontology engineers. The lack of tool support is noticed in the requirement elicitation process as well. In this aspect, the rise in the adoption and accessibility of knowledge graphs allows for the development and use of automated tools to assist with the elicitation of requirements from such a complementary source of data. Therefore, this doctoral research is focused on developing methods and tools that support the requirement elicitation and testing steps of an ontology engineering process. To support the testing of the ontology, we have developed XDTesting, a web application that is integrated with the GitHub platform that serves as an ontology testing manager. Concurrently, to support the elicitation and documentation of competency questions, we have defined and implemented RevOnt, a method to extract competency questions from knowledge graphs. Both methods are evaluated through their implementation and the results are promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles and electronic components inside the vehicle are becoming increasingly important. The software as well starts to have a significant impact on modern high-end cars therefore a careful validation process needs to be implemented with the aim of having a bug free product when it is released. The software complexity increases and thus also the testing phases is more demanding. Test can be troublesome and, in some cases, boring and easy. The intelligence can be moved in test definition and writing rather than on test execution. The aim of this document is to start the definition of an automatic modular testing system capable to execute test cycles on systems that interacts with the CAN networks and with DUT that can be touched with a robotic arm. The document defines a first version of the system, in particular the hardware interface part with the aim of taking logs and execute test in an automated fashion with the test engineer can have a higher focus on the test definition and analysis rather than execution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.