847 resultados para asymptotically hyperbolic
Resumo:
Surface plasmon polaritons usually exist on a few suitable plasmonic materials; however, nanostructured plasmonic metamaterials allow a much broader range of optical properties to be designed. Here, bottom-up and top-down nanostructuring are combined, creating hyperbolic metamaterial-based photonic crystals termed hyperbolic polaritonic crystals, allowing free-space access to the high spatial frequency modes supported by these metamaterials.
Resumo:
Perturbations of asymptotically Anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
In this work we solve Mathematical Programs with Complementarity Constraints using the hyperbolic smoothing strategy. Under this approach, the complementarity condition is relaxed through the use of the hyperbolic smoothing function, involving a positive parameter that can be decreased to zero. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
Exercises, exam questions and solutions for a fourth year hyperbolic geometry course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
Resumo:
The emergence of mental states from neural states by partitioning the neural phase space is analyzed in terms of symbolic dynamics. Well-defined mental states provide contexts inducing a criterion of structural stability for the neurodynamics that can be implemented by particular partitions. This leads to distinguished subshifts of finite type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically stable fixed points or limit tori whereas irreducible shifts are obtained from generating partitions of mixing hyperbolic systems. These stability criteria are applied to the discussion of neural correlates of consiousness, to the definition of macroscopic neural states, and to aspects of the symbol grounding problem. In particular, it is shown that compatible mental descriptions, topologically equivalent to the neurodynamical description, emerge if the partition of the neural phase space is generating. If this is not the case, mental descriptions are incompatible or complementary. Consequences of this result for an integration or unification of cognitive science or psychology, respectively, will be indicated.