888 resultados para asexual reproduction
Resumo:
Biological activity introduces variability in element incorporation during calcification and thereby decreases the precision and accuracy when using foraminifera as geochemical proxies in paleoceanography. This so-called 'vital effect' consists of organismal and environmental components. Whereas organismal effects include uptake of ions from seawater and subsequent processing upon calcification, environmental effects include migration- and seasonality-induced differences. Triggering asexual reproduction and culturing juveniles of the benthic foraminifer Ammonia tepida under constant, controlled conditions allow environmental and genetic variability to be removed and the effect of cell-physiological controls on element incorporation to be quantified. Three groups of clones were cultured under constant conditions while determining their growth rates, size-normalized weights and single-chamber Mg/Ca and Sr/Ca using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Results show no detectable ontogenetic control on the incorporation of these elements in the species studied here. Despite constant culturing conditions, Mg/Ca varies by a factor of similar to 4 within an individual foraminifer while intra-individual Sr/Ca varies by only a factor of 1.6. Differences between clone groups were similar to the intra-clone group variability in element composition, suggesting that any genetic differences between the clone-groups studied here do not affect trace element partitioning. Instead, variability in Mg/Ca appears to be inherent to the process of bio-calcification itself. The variability in Mg/Ca between chambers shows that measurements of at least 6 different chambers are required to determine the mean Mg/Ca value for a cultured foraminiferal test with a precision of <= 10%
Resumo:
En esta memoria de Tesis Doctoral se aborda el estudio paleobotánico de seis yacimientos tobáceos situados en las localidades burgalesas de Tubilla del Agua, Sedano, Herrán, Tobera y Frías, y en la alavesa de Ocio. El registro fósil encontrado en estos afloramientos se analiza de forma conjunta con el objetivo de conocer la evolución de la vegetación en el sector biogeográfico Castellano Cantábrico. Este sector se considera el territorio para el cual los hallazgos paleobotánicos son representativos y extrapolables, en tanto que constituye una región homogénea desde el punto de vista florístico, que abarca todos los yacimientos prospectados. El contexto temporal en el que se enmarca este estudio es el final del Cuaternario, desde el Pleistoceno Medio hasta la actualidad. Este intervalo se ha establecido a partir de la edad de los depósitos estudiados, la cual ha sido determinada —para los yacimientos de los que no se disponía de edades fiables— mediante la datación de muestras extraídas de las diferentes unidades litológicas identificadas. Para ello han sido empleadas las técnicas de carbono-14, desequilibrio de las series del uranio y racemización de aminoácidos. Los resultados geocronológicos obtenidos junto con el análisis geomorfológico de los yacimientos han permitido vincular la génesis de las 13 unidades litológicas identificadas con diferentes estadíos climáticos. Estos abarcan un amplio rango de condiciones ambientales, desde las más extremas del Último Máximo Glacial, hasta las más benignas de los Estadíos Isotópicos Marinos interglaciares 1 y 5. Como resultado de la prospección de los depósitos de toba fueron recuperados 1.820 fósiles, la mayoría impresiones foliares, pero también moldes de estróbilos femeninos, ramas y corteza, así como 42 carbones y restos subfósiles de Pinus sp. La identificación taxonómica de estos restos se ha realizado fundamentalmente a partir del análisis de caracteres diagnósticos morfológicos. Como resultado de ello, han sido descritos 28 taxones pertenecientes a las subclases Bryidae, Polypodiidae, Pinidae y Magnoliidae. La flora de los yacimientos estudiados se puede clasificar en tres grupos en función de sus requerimientos ecológicos: (i) uno formado por dos especies de alta tolerancia a la continentalidad —Pinus nigra y Quercus faginea—, las cuales aparecen bien representadas en la mayoría de los depósitos; (ii) otro constituido fundamentalmente por un conjunto de árboles y arbustos que habitualmente tienen el papel de especies acompañantes en los bosques ibéricos submediterráneos y eurosiberianos; y (iii) un tercer grupo compuesto por taxones hidrófitos o edafohigrófilos asociados al ecosistema del fitohermo activo y la vegetación de ribera. En el capítulo de Discusión se propone y analiza la hipótesis de que P. nigra y Q. faginea habrían sido las especies protagonistas de la vegetación zonal del sector Castellano Cantábrico durante el Cuaternario Final. Estas podrían haber persistido como tal incluso durante las épocas más frías, debido a su amplia valencia ecológica y a la capacidad de reproducirse vegetativamente en el caso del quejigo. Por el contrario, los taxones mesofíticos y eurosiberianos pudieron haber sufrido la expansión y retracción de sus poblaciones al ritmo de las oscilaciones climáticas. Sin embargo, la orografía diversa del sector Castellano Cantábrico proporciona emplazamientos en los que se combinan las diversas variables fisiográficas, de tal forma que pudieron haber existido microrrefugios en los que encontraron cobijo algunos taxones mesotérmicos y eurosiberianos durante los periodos glaciales. Por último, la historia evolutiva reciente de la vegetación de este territorio ha estado marcada por la acción antrópica, la cual empezó a ser manifiesta a partir del Neolítico. Esta se tradujo en la degradación y reducción de la cubierta forestal, así como en la extinción del pino laricio del Sector Castellano Cantábrico en los dos últimos milenios. ABSTRACT This PhD Dissertation focuses in the study of six tufa formations located nearby the villages of Tubilla del Agua, Sedano, Herrán, Tobera y Frías, all of them in the province of Burgos, and Ocio, which belongs to the province of Álava. We analyze the palaeobotanical archives of these sites with the purpose of unveiling and understanding the evolution of the vegetation of the Castilian Cantabrian biogeographical sector. This area is considered to be the territory that is represented in the palaeobotanical sample of the studied tufa archives. It is the homogeneous phitogeographical area with the lowest rank that include all the sites. The time frame of this study is the last part of the Quaternary, since the Middle Pleistocene to the present time. This interval is defined by the age of the tufa deposits, which were dated —for the ones that there were not available datings— throughout the analysis of 20 tufa samples taken from the 13 identified lithostratigraphic units. The age of the samples has been determined by using the methods of radiocarbon, U-Th dating and amino acid racemization. Chronological results, along with the chronostratigraphic study of the sites has allowed us to relate the build-up of the 13 identified lithostratigraphic units with different climatic stages. These structures were deposited in a wide range of climatic conditions, from the most extreme ones of the Last Glacial Maximum, to the warmer ones of the Marine Isotopic Stages 1 and 5. A total of 1,820 fossils were recovered from the tufa deposits, most of them were leaf impressions, but also pine cones, branches and bark moulds, along with charcoal and Pinus nigra macro remains. The taxonomical identification of these remains has been done mainly through the analysis of morphological traits. As a result of this process, 28 taxa belonging to the subclass of Bryidae, Polypodiidae, Pinidae and Magnoliidae were identified. The persistency of some taxa can be traced along different climatic stages in this fossil record. This fossil flora can be classified in three different groups: (i) the first one would be composed of two species with high continental climate tolerance —Pinus nigra y Quercus faginea—, which can be found in most of the deposits, (ii) the second group would be mostly formed by trees and shrubs that usually grow in the Iberian forests as an accessory species and (iii) the third one is composed of hydrophytes or hydrophilic taxa associate to the streams, riparian zones or the active tufa ecosystem. In the Discussion chapter we propose and analyse the hypothesis that P.nigra and Q. faginea were the main species of the zonal vegetation of the Castilian Cantabrian biogeographical sector during the last part of the Quaternary. This species could have persisted due to their wide ecological amplitude and also due to the capacity of asexual reproduction in the cases of the oak. On the other hand, mesophitic taxa could have suffered the retraction and expansion of their population following the climate oscillations. However, the diverse orography of the Castilian Cantabrian biogeographical sector provides a variety of combinations of physiographic variables, which could have been suitable refuges for some of the mesophitic taxa. The recent evolutionary history of the vegetation in this territory has been affected by human activities, which started to be relevant since the Neolithic. This led to a reduction of the forests and eventually, to the extinction of P. nigra in the Castilian Cantabrian biogeographical sector in the last two thousands of years.
Resumo:
Cloning allows the asexual reproduction of selected individuals such that the offspring have an essentially identical nuclear genome. Cloning by nuclear transfer thus far has been reported only with freshly isolated cells and cells from primary cultures. We previously reported a method of cloning mice from adult somatic cells after nuclear transfer by microinjection. Here, we apply this method to clone mice from widely available, established embryonic stem (ES) cell lines at late passage. With the ES cell line R1, 29% of reconstructed oocytes developed in vitro to the morula/blastocyst stage, and 8% of these embryos developed to live-born pups when transferred to surrogate mothers. We thus cloned 26 mice from R1 cells. Nuclei from the ES cell line E14 also were shown to direct development to term. We present evidence that the nuclei of ES cells at G1- or G2/M-phases are efficiently able to support full development. Our findings demonstrate that late-passage ES cells can be used to produce viable cloned mice and provide a link between the technologies of ES cells and animal cloning. It thus may be possible to clone from a single cell a large number of individuals over an extended period.
Resumo:
Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.
Resumo:
Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. However, unlike conjugation, this latter process also requires the function of the nucleotide excision repair genes. Following UV irradiation, the recovery of DNA replication requires uvrA and uvrC, as well as recA, recF, and recR. The rec genes appear to be required to protect and maintain replication forks that are arrested at DNA lesions, based on the extensive degradation of the nascent DNA that occurs in their absence. The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.
Resumo:
L’allevamento in cattività dei rettili è in costante crescita negli ultimi anni e richiede conoscenze mediche sempre più specialistiche per far fronte ai numerosi problemi legati a questi animali. Il corretto approccio medico prevede una profonda conoscenza delle specie prese in esame dal momento che la maggior parte delle problematiche riproduttive di questi animali sono legate ad una non corretta gestione dei riproduttori. L’apparato riproduttore dei rettili è estremamente vario a seconda delle specie prese in considerazione. Sauri ed ofidi possiedono due organi copulatori denominati emipeni e posizionati alla base della coda caudalmente alla cloaca che vengono estroflessi alternativamente durante l’accoppiamento per veicolare lo spera all’interno della cloaca della femmina. In questi animali il segmento posteriore renale è chiamato segmento sessuale, perché contribuisce alla formazione del fluido seminale. Tale porzione, durante la stagione dell’accoppiamento, diventa più voluminosa e cambia drasticamente colore, tanto che può essere confusa con una manifestazione patologica. I cheloni al contrario possiedono un unico pene che non viene coinvolto nella minzione. In questi animali. I testicoli sono due e sono situati all’interno della cavità celomatica in posizione cranioventrale rispetto ai reni. I testicoli possono variare notevolmente sia come forma che come dimensione a seconda del periodo dell’anno. Il ciclo estrale dei rettili è regolato, come pure nei mammiferi, dagli ormoni steroidei. La variazione di questi ormoni a livello ematico è stata studiato da diversi autori con il risultato di aver dimostrato come la variazione dei dosaggi degli stessi determini l’alternanza delle varie fasi del ciclo riproduttivo. La relazione tra presenza di uova (anche placentari) ed alti livelli di progesterone suggerisce che questo ormone gioca un ruolo importante nelle riproduzione delle specie ovipare per esempio stimolando la vascolarizzazione degli ovidutti durante i tre mesi in cui si ha lo sviluppo delle uova. Il 17-beta estradiolo è stato descritto come un ormone vitellogenico grazie alla sua capacità di promuovere lo sviluppo dei follicoli e la formazione di strati protettivi dell’uovo. L’aumento del livello di estradiolo osservato esclusivamente nelle femmine in fase vitellogenica è direttamente responsabile della mobilizzazione delle riserve materne in questa fase del ciclo. Va sottolineato come il progesterone sia in effetti un antagonista dell’estradiolo, riducendo la vitellogenesi e intensificando gli scambi materno fetali a livello di ovidutto. Le prostaglandine (PG) costituiscono un gruppo di molecole di origine lipidica biologicamente attive, sintetizzate sotto varie forme chimiche. Sono noti numerosi gruppi di prostaglandine ed è risputo che pesci, anfibi, rettili e mammiferi sintetizzano una o più prostaglandine partendo da acidi grassi precursori. Queste sostanze anche nei rettili agiscono sulla mucosa dell’utero aumentandone le contrazioni e sui corpi lutei determinandone la lisi. La maturità sessuale dei rettili, dipende principalmente dalla taglia piuttosto che dall’età effettiva dell’animale. In cattività, l’alimentazione e le cure dell’allevatore, possono giocare un ruolo fondamentale nel raggiungimento della taglia necessaria all’animale per maturare sessualmente. Spesso, un animale d’allevamento raggiunge prima la maturità sessuale rispetto ai suoi simili in natura. La maggior parte dei rettili sono ovipari, ovvero depongono uova con guscio sulla sabbia o in nidi creati appositamente. La condizione di ovoviviparità è riscontrabile in alcuni rettili. Le uova, in questo caso, vengono ritenute all’interno del corpo, fino alla nascita della progenie. Questa può essere considerata una strategia evolutiva di alcuni animali, che in condizioni climatiche favorevoli effettuano l’ovo deposizione, ma se il clima non lo permette, ritengono le uova fino alla nascita della prole. Alcuni serpenti e lucertole sono vivipari, ciò significa che l’embrione si sviluppa all’interno del corpo dell’animale e che è presente una placenta. I piccoli fuoriescono dal corpo dell’animale vivi e reattivi. La partenogenesi è una modalità di riproduzione asessuata, in cui si ha lo sviluppo dell’uovo senza che sia avvenuta la fecondazione. Trenta specie di lucertole e alcuni serpenti possono riprodursi con questo metodo. Cnemidophorus uniparens, C. velox e C. teselatus alternano la partenogenesi a una riproduzione sessuata, a seconda della disponibilità del maschio. La maggior parte dei rettili non mostra alcuna cura materna per le uova o per i piccoli che vengono abbandonati al momento della nascita. Esistono tuttavia eccezioni a questa regola generale infatti alcune specie di pitoni covano le uova fino al momento della schiusa proteggendole dai predatori e garantendo la giusta temperatura e umidità. Comportamenti di guardia al nido sono poi stati documentati in numerosi rettili, sia cheloni che sauri che ofidi. Nella maggior parte delle tartarughe, la riproduzione è legata alla stagione. Condizioni favorevoli, possono essere la stagione primaverile nelle zone temperate o la stagione umida nelle aree tropicali. In cattività, per riprodurre queste condizioni, è necessario fornire, dopo un periodo di ibernazione, un aumento del fotoperiodo e della temperatura. L’ atteggiamento del maschio durante il corteggiamento è di notevole aggressività, sia nei confronti degli altri maschi, con i quali combatte copiosamente, colpendoli con la corazza e cercando di rovesciare sul dorso l’avversario, sia nei confronti della femmina. Infatti prima della copulazione, il maschio insegue la femmina, la sperona, la morde alla testa e alle zampe e infine la immobilizza contro un ostacolo. Il comportamento durante la gravidanza è facilmente riconoscibile. La femmina tende ad essere molto agitata, è aggressiva nei confronti delle altre femmine e inizia a scavare buche due settimane prima della deposizione. La femmina gravida costruisce il nido in diverse ore. Scava, con gli arti anteriori, buche nel terreno e vi depone le uova, ricoprendole di terriccio e foglie con gli arti posteriori. A volte, le tartarughe possono trattenere le uova, arrestando lo sviluppo embrionale della prole per anni quando non trovano le condizioni adatte a nidificare. Lo sperma, inoltre, può essere immagazzinato nell’ovidotto fino a sei anni, quindi la deposizione di uova fertilizzate può verificarsi senza che sia avvenuto l’accoppiamento durante quel ciclo riproduttivo. I comportamenti riproduttivi di tutte le specie di lucertole dipendono principalmente dalla variazione stagionale, correlata al cambiamento di temperatura e del fotoperiodo. Per questo, se si vuole far riprodurre questi animali in cattività, è necessario valutare per ogni specie una temperatura e un’illuminazione adeguata. Durante il periodo riproduttivo, un atteggiamento caratteristico di diverse specie di lucertole è quello di riprodurre particolari danze e movimenti ritmici della testa. In alcune specie, possiamo notare il gesto di estendere e retrarre il gozzo per mettere in evidenza la sua brillante colorazione e richiamare l’attenzione della femmina. L’aggressività dei maschi, durante la stagione dell’accoppiamento, è molto evidente, in alcuni casi però, anche le femmine tendono ad essere aggressive nei confronti delle altre femmine, specialmente durante l’ovo deposizione. La fertilizzazione è interna e durante la copulazione, gli spermatozoi sono depositati nella porzione anteriore della cloaca femminile, si spostano successivamente verso l’alto, dirigendosi nell’ovidotto, in circa 24-48 ore; qui, fertilizzano le uova che sono rilasciate nell’ovidotto dall’ovario. Negli ofidi il corteggiamento è molto importante e i comportamenti durante questa fase possono essere diversi da specie a specie. I feromoni specie specifici giocano un ruolo fondamentale nell’attrazione del partner, in particolar modo in colubridi e crotalidi. La femmina di queste specie emette una traccia odorifera, percepita e seguita dal maschio. Prima dell’accoppiamento, inoltre, il maschio si avvicina alla femmina e con la sua lingua bifida o con il mento, ne percorre tutto il corpo per captare i feromoni. Dopo tale comportamento, avviene la copulazione vera e propria con la apposizione delle cloache; gli emipeni vengono utilizzati alternativamente e volontariamente dal maschio. Durante l’ovulazione, il serpente aumenterà di volume nella sua metà posteriore e contrazioni muscolari favoriranno lo spostamento delle uova negli ovidotti. In generale, se l’animale è oviparo, avverrà una muta precedente alla ovo deposizione, che avviene prevalentemente di notte. Gli spermatozoi dei rettili sono morfologicamente simili a quelli di forme superiori di invertebrati. La fecondazione delle uova, da parte di spermatozoi immagazzinati nel tratto riproduttivo femminile, è solitamente possibile anche dopo mesi o perfino anni dall’accoppiamento. La ritenzione dei gameti maschili vitali è detta amphigonia retardata e si ritiene che questa caratteristica offra molti benefici per la sopravvivenza delle specie essendo un adattamento molto utile alle condizioni ambientali quando c’è una relativa scarsità di maschi conspecifici disponibili. Nell’allevamento dei rettili in cattività un accurato monitoraggio dei riproduttori presenta una duplice importanza. Permette di sopperire ad eventuali errori di management nel caso di mancata fertilizzazione e inoltre permette di capire quale sia il grado di sviluppo del prodotto del concepimento e quindi di stabilire quale sia il giorno previsto per la deposizione. Le moderne tecniche di monitoraggio e l’esperienza acquisita in questi ultimi anni permettono inoltre di valutare in modo preciso lo sviluppo follicolare e quindi di stabilire quale sia il periodo migliore per l’accoppiamento. Il dimorfismo sessuale nei serpenti è raro e anche quando presente è poco evidente. Solitamente nei maschi, la coda risulta essere più larga rispetto a quella della femmina in quanto nel segmento post-cloacale vi sono alloggiati gli emipeni. Il maschio inoltre, è generalmente più piccolo della femmina a parità di età. Molti cheloni sono sessualmente dimorfici sebbene i caratteri sessuali secondari siano poco apprezzabili nei soggetti giovani e diventino più evidenti dopo la pubertà. In alcune specie si deve aspettare per più di 10 anni prima che il dimorfismo sia evidente. Le tartarughe di sesso maschile tendono ad avere un pene di grosse dimensioni che può essere estroflesso in caso di situazioni particolarmente stressanti. I maschi sessualmente maturi di molte specie di tartarughe inoltre tendono ad avere una coda più lunga e più spessa rispetto alle femmine di pari dimensioni e la distanza tra il margine caudale del piastrone e l’apertura cloacale è maggiore rispetto alle femmine. Sebbene la determinazione del sesso sia spesso difficile nei soggetti giovani molti sauri adulti hanno dimorfismo sessuale evidente. Nonostante tutto comunque anche tra i sauri esistono molte specie come per esempio Tiliqua scincoides, Tiliqua intermedia, Gerrhosaurus major e Pogona vitticeps che anche in età adulta non mostrano alcun carattere sessuale secondario evidente rendendone molto difficile il riconoscimento del sesso. Per garantire un riconoscimento del sesso degli animali sono state messe a punto diverse tecniche di sessaggio che variano a seconda della specie presa in esame. L’eversione manuale degli emipeni è la più comune metodica utilizzata per il sessaggio dei giovani ofidi ed in particolare dei colubridi. I limiti di questa tecnica sono legati al fatto che può essere considerata attendibile al 100% solo nel caso di maschi riconosciuti positivi. L’eversione idrostatica degli emipeni esattamente come l’eversione manuale degli emipeni si basa sull’estroflessione di questi organi dalla base della coda, pertanto può essere utilizzata solo negli ofidi e in alcuni sauri. La procedura prevede l’iniezione di fluido sterile (preferibilmente soluzione salina isotonica) nella coda caudalmente all’eventuale posizione degli emipeni. Questa tecnica deve essere eseguita solo in casi eccezionali in quanto non è scevra da rischi. L’utilizzo di sonde cloacali è il principale metodo di sessaggio per gli ofidi adulti e per i sauri di grosse dimensioni. Per questa metodica si utilizzano sonde metalliche dello spessore adeguato al paziente e con punta smussa. Nei soggetti di genere maschile la sonda penetra agevolmente al contrario di quello che accade nelle femmine. Anche gli esami radiografici possono rendersi utili per il sessaggio di alcune specie di Varani (Varanus achanturus, V. komodoensis, V. olivaceus, V. gouldi, V. salvadorii ecc.) in quanto questi animali possiedono zone di mineralizzazione dei tessuti molli (“hemibacula”) che possono essere facilmente individuate nei maschi. Diversi studi riportano come il rapporto tra estradiolo e androgeni nel plasma o nel liquido amniotico sia un possibile metodo per identificare il genere sessuale delle tartarughe. Per effettuare il dosaggio ormonale, è necessario prelevare un campione di sangue di almeno 1 ml ad animale aspetto che rende praticamente impossibile utilizzare questo metodo di sessaggio nelle tartarughe molto piccole e nei neonati. L’ecografia, volta al ritrovamento degli emipeni, sembra essere un metodo molto preciso, per la determinazione del sesso nei serpenti. Uno studio compiuto presso il dipartimento di Scienze Medico Veterinarie dell’Università di Parma, ha dimostrato come questo metodo abbia una sensibilità, una specificità e un valore predittivo positivo e negativo pari al 100%. La radiografia con mezzo di contrasto e la tomografia computerizzata possono essere utilizzate nel sessaggio dei sauri, con buoni risultati. Uno studio, compiuto dal dipartimento di Scienze Medico Veterinarie, dell’Università di Parma, ha voluto mettere a confronto diverse tecniche di sessaggio nei sauri, tra cui l’ecografia, la radiografia con e senza mezzo di contrasto e la tomografia computerizzata con e senza mezzo di contrasto. I risultati ottenuti, hanno dimostrato come l’ecografia non sia il mezzo più affidabile per il riconoscimento degli emipeni e quindi del sesso dell’animale, mentre la radiografia e la tomografia computerizza con mezzo di contrasto siano tecniche affidabili e accurate in queste specie. Un metodo valido e facilmente realizzabile per il sessaggio dei cheloni anche prepuberi è la cistoscopia. In un recente studio la cistoscopia è stata effettuata su quindici cheloni deceduti e venticinque cheloni vivi, anestetizzati. In generale, questo metodo si è dimostrato non invasivo per le tartarughe, facilmente ripetibile in diversi tipi di tartarughe e di breve durata. Tra le principali patologie riproduttive dei rettili le distocie sono sicuramente quelle che presentano una maggior frequenza. Quando si parla di distocia nei rettili, si intendono tutte quelle situazioni in cui si ha una mancata espulsione e deposizione del prodotto del concepimento entro tempi fisiologici. Questa patologia è complessa e può dipendere da diverse cause. Inoltre può sfociare in malattie sistemiche a volte molto severe. Le distocie possono essere classificate in ostruttive e non ostruttive in base alle cause. Si parla di distocia ostruttiva quando si verificano delle condizioni per cui viene impedito il corretto passaggio delle uova lungo il tratto riproduttivo (Fig.13). Le cause possono dipendere dalla madre o dalle caratteristiche delle uova. Nel caso di distocia non ostruttiva le uova rinvenute sono solitamente di dimensioni normali e la conformazione anatomica della madre è fisiologica. L’eziologia è da ricercare in difetti comportamentali, ambientali e patologici. Non esistono sintomi specifici e patognomonici di distocia. La malattia diviene evidente e conclamata solamente in presenza di complicazioni. Gli approcci terapeutici possibili sono vari a seconda della specie animale e della situazione. Fornire un’area adeguata per la nidiata: se la distocia non è ostruttiva si può cercare di incoraggiare l’animale a deporre autonomamente le uova creando un idoneo luogo di deposizione. Il trattamento medico prevede la stimolazione della deposizione delle uova ritenute mediante l’induzione con ossitocina. L’ossitocina viene somministrata alle dosi di 1/3 UI/kg per via intramuscolare. Uno studio condotto presso l’Università veterinaria di Parma ha comparato le somministrazioni di ossitocina per via intramuscolare e per via intravenosa, confrontando le tempistiche con le quali incominciano le contrazioni e avviene la completa ovodeposizione e dimostrando come per via intravenosa sia possibile somministrare dosi più basse rispetto a quelle riportate solitamente in letteratura ottenendo comunque un ottimo risultato. Nel caso in cui il trattamento farmacologico dovesse fallire o non fosse attuabile, oppure in casi di distocia ostruttiva è possibile ricorrere alla chirurgia. Per stasi follicolare si intende la incapacità di produrre sufficiente quantità di progesterone da corpi lutei perfettamente funzionanti. Come per la distocia, l’eziologia della stasi follicolare è variegata e molto ampia: le cause possono essere sia ambientali che patologiche. La diagnosi clinica viene fatta essenzialmente per esclusione. Come per la distocia, anche in questo caso l’anamnesi e la raccolta del maggior quantitativo di informazioni è fondamentale per indirizzarsi verso il riconoscimento della patologia. Per prolasso si intende la fuoriuscita di un organo attraverso un orifizio del corpo. Nei rettili, diversi organi possono prolassare attraverso la cloaca: la porzione terminale dell’apparato gastroenterico, la vescica urinaria, il pene nel maschio (cheloni) e gli ovidutti nella femmina. In sauri e ofidi gli emipeni possono prolassare dalle rispettive tasche in seguito ad eccesiva attività sessuale97. La corretta identificazione del viscere prolassato è estremamente importante e deve essere effettuata prima di decidere qualsiasi tipologia di trattamento ed intervento. Nei casi acuti e non complicati è possibile la riduzione manuale dell’organo, dopo un accurato lavaggio e attenta pulizia. Se questo non dovesse essere possibile, l’utilizzo di lubrificanti e pomate antibiotiche garantisce all’organo una protezione efficiente. Nel caso in cui non si sia potuto intervenire celermente e l’organo sia andato incontro a infezione e congestione venosa prolungata con conseguente necrosi, l’unica soluzione è l’amputazione
Resumo:
BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.
Resumo:
Acropora is one of the largest taxonomic groups of scleractinian corals in the Indo-Pacific and contributes towards the establishment of coral communities in the Ryukyu Islands. Branching Acropora populations have a component of asexual reproduction; however, this may lead to a decline in genetic diversity, leaving populations vulnerable to environmental changes. Therefore, a sufficient supply of larvae produced via sexual reproduction is necessary to maintain genetic diversity in the branching Acropora communities. Fertilization success in branching Acropora depends on a variety of factors, including genetic and environmental conditions. How genotype and/or genetic compatibility drives fertilization rates in Acropora communities under natural conditions has not been investigated. To investigate how genotype and/or genetic compatibility determine fertilization rates in Acropora communities over the long-term, cross-mating experiments with branching Acropora using the same colonies were conducted from 2006 to 2011 in an aquarium. Acropora from cultured and natural colonies collected from a reef (26° 40' 19.2'' N, 127° 52' 40.8'' E) were used. Fertilization rates showed less variation within the same crossing combinations, but large variation across years for the same genotypes of focal colonies. Results indicated that fertilization rate was highly variable depending on genotype compatibility with different mating partners. Additionally, simulations of fertilization rates with increasing population size revealed that small populations that had low genetic diversity (fewer than 10 genotypes) failed to fertilize. These results support the establishment or maintenance of source populations that facilitate sufficient genetic diversity of branching Acropora to enhance coral community restoration.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.
Resumo:
18 p.