908 resultados para approach to learning
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
This working paper explores the use of interactive learning tools, such as business simulations, to facilitate the active learning process in accounting classes. Although business simulations were firstly introduced in the United States in the 1950s, the vast majority of accounting professors still use traditional teaching methods, based in end-of-chapter exercises and written cases. Moreover, the current students’ generation brings new challenges to the classroom related with their video, game, internet and mobile culture. Thus, a survey and an experimentation were conducted to understand, on one hand, if accounting professors are willing to adjust their teaching methods with the adoption of interactive learning tools and, on the other hand, if the adoption of interactive learning tools in accounting classes yield better academic results and levels of satisfaction among students. Students using more interactive learning approaches scored significantly higher means than others that did not. Accounting professors are clearly willing to try, at least once, the use of an accounting simulator in classes.
Resumo:
This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses
Resumo:
We describe an adaptive, mid-level approach to the wireless device power management problem. Our approach is based on reinforcement learning, a machine learning framework for autonomous agents. We describe how our framework can be applied to the power management problem in both infrastructure and ad~hoc wireless networks. From this thesis we conclude that mid-level power management policies can outperform low-level policies and are more convenient to implement than high-level policies. We also conclude that power management policies need to adapt to the user and network, and that a mid-level power management framework based on reinforcement learning fulfills these requirements.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
Desde el campo de la informática educativa, varios autores exponen el posible efecto positivo de incorporar videojuegos y simulaciones con elementos de juego en los procesos educativos. Esta postura continúa siendo objeto de debate y sus detractores identifican, dos problemas fundamentales, por un lado el excesivo coste de estas iniciativas y, por otro, su carácter limitado que obliga a que formen parte de variados procesos educativos.. En este trabajo se estudia cómo abordar estos dos problemas desde un punto de vista tecnológico. Se propone una plataforma menor que e-adventure, un entorno de desarrollo para juegos educativos. Esta plataforma aborda el primer problema planteando, un modelo de proceso de desarrollo inspirado en la aproximación documental al desarrollo de software. El modelo de proceso incluye la propuesta de un lenguaje de marcado extendido, XML, específico del dominio de las aventuras gráficas educativas. Este lenguaje es sencillo de utilizar y facilita la creación de este tipo de juegos e incluye construcciones específicamente educativas que dan soporte a la evaluación de la actividad del alumno y a patrones de aprendizaje adaptativo. El segundo problema se aborda proponiendo la integración de dichos juegos con plataformas de tele-enseñanza, LMS, que se emplean tanto en la enseñanza a través de internet como en aproximaciones del aprendizaje electrónico, e-learning, combinadas con la enseñanza tradicional.. Se incluye la implementación de un prototipo de la plataforma propuesta y varios juegos educativos desarrollados con ella, en colaboración con investigadores e instructores de otros campos..