979 resultados para antisense RNA, breast, breast cancer, cancer progression, extracellular matrix, gene knockdown, insulin-like growth factor, insulin-like growth factor binding protein, insulin-like growth factor receptor, lentivirus, metastasis, migration, proliferation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular analysis of invasive breast cancer and its precursors has furthered our understanding of breast cancer progression. In the past few years, new multi-step pathways of breast cancer progression have been delineated through genotypic-phenotypic correlations. Nuclear grade, more than any other pathological feature, is strongly associated with the number and pattern of molecular genetic abnormalities in breast cancer cells. Thus, there are two distinct major pathways to the evolution of low- and high-grade invasive carcinomas: whilst the former consistently show oestrogen receptor (ER) and progesterone receptor (PgR) positivity and 16q loss, the latter are usually ER/PgR-negative and show Her-2 over-expression/amplification and complex karyotypes. The boundaries between the evolutionary pathways of well-differentiated/low-grade ductal and lobular carcinomas have been blurred, with changes in E-cadherin expression being one of the few distinguishing features between the two. In addition, lesions long thought to be precursors of breast carcinomas, such as hyperplasia of usual type, are currently considered mere risk indicators, whilst columnar cell lesions are now implicated as non-obligate precursors of atypical ductal hyperplasia (ADH) and well-differentiated ductal carcinoma in situ (DCIS). However, only through the combination of comprehensive morphological analysis and cutting-edge molecular tools can this knowledge be translated into clinical practice and patient management. Copyright (C) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways implicated in causing drug resistance in breast cancer is the constitutive activation of NFκB (Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2 constitutively activates NFκB which in turn confers chemoresistance to breast cancer cells against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2 and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in the constitutive activation of NFκB by TG2 leading to drug resistance. Crucial to the activation of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the complex of IκBα and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and polymerization of IκBα. The association of TG2 with the IκBα-NFκB complex was determined to be independent of IKKα/β function. The polymerized IκBα is degraded in the cytoplasm by the μ-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2 targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by IKKε took place in the cell nucleus. Importantly, this study also investigated the transcriptional regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-NFκB feedback loop in conferring drug resistance to breast cancer cells. This data provides evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune system recognizes microbial features leading to the activation of the adaptive immune system. The role of Toll-like receptor 9 (TLR9) is to recognize microbial DNA. In addition to immune cells, TLR9 is widely expressed in breast cancer in addition to other cancers. Breast cancer is the most common cancer in women, affecting approximately one in eight in industrialized countries. In the clinical setting, breast cancer is divided into three clinical subtypes with type-specific treatments. These subtypes are estrogen receptor (ER)-positive, HER2-positive and triple-negative (TNBC) breast cancer. TNBC is the most aggressive subtype that can be further divided into several subtypes. TNBC tumors lack ER, progesterone receptor and HER2 receptor. Therefore, the current clinically used targeted therapies are not suitable for TNBC treatment as TNBC is a collection of diseases rather than one entity. Some TNBC patients are cured with standard chemotherapy, while others rapidly die due to the disease. There are no clinically used iomarkers which would help in predicting which patients respond to chemotherapy. During this thesis project, we discovered a novel good-prognosis TNBC subtype. These tumors have high TLR9 expression levels. Our findings suggest that TLR9 screening in TNBC patient populations might help to identify the patients that are at the highest risk regarding a relapse. To gain better understanding on the role of TLR9 in TNBC, we developed an animal model which mimicks this disease. We discovered that suppression of TLR9 expression in TNBC cells increases their invasive properties in hypoxia. In line with the clinical findings, TNBC cells with low TLR9 expression also formed more aggressive tumors in vivo. TLR9 expression did not, however, affect TNBC tumor responses to doxorubicin. Our results suggest that tumor TLR9 expression may affect chemotherapyrelated immune responses, however, this requires further investigation. Our other findings revealed that DNA released by chemotherapy-killed cells induces TLR9-mediated invasion in living cancer cells. Normally, extracellular self-DNA is degraded by enzymes, but during massive cell death, for example during chemotherapy, the degradation machinery may be exhausted and self-DNA is taken up into living cells activating TLR9. We also discovered that the malaria drug chloroquine, an inhibitor of autophagy and TLR9 signalling does not inhibit TNBC growth in vivo, independently of the TLR9 status. Finally, we found that ERα as well as the sex hormones estrogen and testosterone regulate TLR9 expression and activity in breast cancer cells in vitro. As a conclusion, we suggest that TLR9 is a potential biomarker in TNBC. ------- Sisäsyntyisen immuniteetin tehtävä on tunnistaa mikrobien molekyylirakenteita, mikä saa aikaan adaptiivisen immuunijärjestelmän aktivoitumisen. Tollin kaltainen reseptori 9 (TLR9) on dna:ta tunnistava sisäsyntyisen immuniteetin reseptori, jota ilmennetään myös useissa syövissä, kuten rintasyövässä. Rintasyöpä on naisten yleisin syöpä, johon joka kahdeksas nainen sairastuu elämänsä aikana. Kliinisesti rintasyöpä jaotellaan kolmeen alatyyppiin, joista kolmoisnegatiivinen rintasyöpä on aggressiivisin. Tämän tyypin syövät eivät ilmennä hormonireseptoreja (estrogeeni- ja progesteronireseptori) tai HER2-reseptoria. Tästä johtuen kolmoisnegatiivisten potilaiden hoitoon ei voida käyttää rintasyövän nykyisten hoitosuositusten mukaisia täsmähoitoja. Kolmoisnegatiivinen rintasyöpä ei kuitenkaan ole yksi sairaus, koska molekyylitasolla sen on osoitettu koostuvan lukuisista, biologialtaan erilaisista syöpämuodoista. Tällä hetkellä kliinisessä käytössä ei ole biomarkkeria, jonka avulla kolmoisnegatiivisen rintasyövän alatyypit voisi erottaa toisistaan. Löysimme uuden kolmoisnegatiivisen syövän alatyypin, joka ilmentää vain vähän TLR9-proteiinia. Tällä alatyypillä on erittäin huono ennuste ja tulostemme perusteella TRL9-tason selvittäminen voisi seuloa huonoennusteiset syövät kolmoisnegatiivisten syöpien joukosta. Kehitimme eläinmallin, jolla voidaan tutkia matalan ja korkean TLR9-tason vaikutuksia kolmoisnegatiivisten kasvainten hoitovasteeseen. Toinen löytömme oli, että kemoterapialla tapettujen syöpäsolujen dna saa aikaan elävien syöpäsolujen TLR9-välitteistä invaasiota. Normaalisti entsyymit hajoittavat yksilön oman solunulkoisen dna:n. Erikoistilanteissa, kuten syöpähoitojen yhteydessä, jolloin solukuolema on massiivista, elimistön oma koneisto ei ehdi tuhoamaan solunulkoista dna:ta ja sitä voi kertyä eläviin soluihin, joissa se aktivoi TLR9:n. Kolmanneksi havaitsimme, että malarialääke klorokiini, joka estää TLR9:n toimintaa ja jolla on syövänvastaisia vaikutuksia soluviljelyolosuhteissa, ei estänyt TLR9-positiivisten tai TLR9-negatiivisten kasvainten kasvua käyttämässämme eläinmallissa. Neljänneksi soluviljelykokeittemme tulokset osoittivat, että sukupuolihormonit estrogeeni ja testosteroni sekä estrogeenireseptori osallistuvat TLR9:n ilmentymisen ja aktiivisuuden säätelyyn. Tuloksemme osoittavat, että TLR9 potentiaalinen biomarkkeri kolmoisnegatiivisessa rintasyövässä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NCOA3 is a known low to moderate-risk breast cancer susceptibility gene, amplified in 5–10% and over expressed in about 60% of breast tumours. Additionally, this over expression is associated with Tamoxifen resistance and poor prognosis. Previously, two variants of NCOA3, 1758G > C and 2880A > G have been associated with breast cancer in two independent populations. Here we assessed the influence of the two NCOA3 variants on breast cancer risk by genotyping an Australian case–control study population. 172 cases and 178 controls were successfully genotyped for the 1758G > C variant and 186 cases and 182 controls were successfully genotyped for the 2880A > G variant using high-resolution melt analysis (HRM). The genotypes of the 1758G > C variant were validated by sequencing. χ2 tests were performed to determine if significant differences exist in the genotype and allele frequencies between the cases and controls. χ2 analysis returned no statistically significant difference (p > 0.05) for genotype frequencies between cases and controls for 1758G > C (χ2 = 0.97, p = 0.6158) or 2880A > G (χ2 = 2.09, p = 0.3516). Similarly, no statistical difference was observed for allele frequencies for 1758G > C (χ2 = 0.07, p = 0.7867) or 2880A > G (χ2 = 0.04, p = 0.8365). Haplotype analysis of the two SNPs also showed no difference between the cases and the controls (p = 0.9585). Our findings in an Australian Caucasian population composed of breast cancer sufferers and an age matched control population did not support the findings of previous studies demonstrating that these markers play a significant role in breast cancer susceptibility. Here, no significant difference was detected between breast cancer patients and healthy matched controls by either the genotype or allele frequencies for the investigated variants (all p ≥ 0.05). While an association of the two variants and breast cancer was not detected in our case–control study population, exploring these variants in a larger population of the same kind may obtain results in concordance with previous studies. Given the importance of NCOA3 and its involvement in biological processes involved in breast cancer and the possible implications variants of the gene could have on the response to Tamoxifen therapy, NCOA3 remains a candidate for further investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The runt-related transcription factor, Runx2 may have an oncogenic role in mediating metastatic events in breast cancer, but whether Runx2 has a role in the early phases of breast cancer development is not clear. We examined the expression of Runx2 and its relationship with oestrogen receptor (ER) and progesterone receptor (PR) in breast cancer cell lines and tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Ten to twenty per cent of breast tumours exhibit a basallike genetic profile and these tumours carry a poor prognosis. Breast tumours which contain germline mutations for BRCA1 commonly exhibit a molecular profile similar to basal breast tumours. BRCA1 is a tumour suppressor gene which is mutated in up to 5–10% of breast cancer cases and is involved in multiple cellular processes including DNA damage control, cell cycle checkpoint control, apoptosis, ubiquitination and transcriptional regulation.

Methods Microarray-based profiling was carried out using the HCC1937EV and HCC1937BR breast cancer cell lines. Basal gene and protein expression levels were analysed by qRT-PCR and western blotting. ChIP analyses were performed and demonstrated that BRCA1 regulates basal gene expression through a transcriptional mechanism involving c-myc.

Results We have previously carried out microarray-based expression profiling to examine differences in gene expression when BRCA1 is reconstituted in BRCA1 mutated HCC1937 breast cancer cells. We observed that p-cadherin and the cytokeratin 5 and cytokeratin 17 genes, which are strongly correlated with the basal phenotype, are differentially expressed when BRCA1 is reconstituted. In addition, qRT-PCR and ChIP analysis of BRCA1 reconstituted cells show that BRCA1 represses the expression of these basal genes by a transcriptional mechanism. Furthermore, abrogation of endogenous BRCA1 protein in the T47D cell line using siRNA results in reexpression of these basal genes, suggesting that BRCA1 expression levels may be important in basal gene expression. We have also demonstrated that BRCA1 is physically associated with the promoter regions of basal genes through an association with c-myc. Consequently, we have confirmed that siRNA inhibition of c-myc in T47D cells results in re-expression of these genes.

Conclusions Our results suggest that BRCA1 is involved in the transcriptional regulation of genes associated with the basal phenotype and that BRCA1 controls basal gene expression through a transcriptional mechanism involving c-myc. Further work is now concentrating on defining the relationship between BRCA1 and basal gene expression and how this may affect clinical responses to breast cancer chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The optimal ways of using aromatase inhibitors or tamoxifen as endocrine treatment for early breast cancer remains uncertain.

METHODS: We undertook meta-analyses of individual data on 31 920 postmenopausal women with oestrogen-receptor-positive early breast cancer in the randomised trials of 5 years of aromatase inhibitor versus 5 years of tamoxifen; of 5 years of aromatase inhibitor versus 2-3 years of tamoxifen then aromatase inhibitor to year 5; and of 2-3 years of tamoxifen then aromatase inhibitor to year 5 versus 5 years of tamoxifen. Primary outcomes were any recurrence of breast cancer, breast cancer mortality, death without recurrence, and all-cause mortality. Intention-to-treat log-rank analyses, stratified by age, nodal status, and trial, yielded aromatase inhibitor versus tamoxifen first-event rate ratios (RRs).

FINDINGS: In the comparison of 5 years of aromatase inhibitor versus 5 years of tamoxifen, recurrence RRs favoured aromatase inhibitors significantly during years 0-1 (RR 0·64, 95% CI 0·52-0·78) and 2-4 (RR 0·80, 0·68-0·93), and non-significantly thereafter. 10-year breast cancer mortality was lower with aromatase inhibitors than tamoxifen (12·1% vs 14·2%; RR 0·85, 0·75-0·96; 2p=0·009). In the comparison of 5 years of aromatase inhibitor versus 2-3 years of tamoxifen then aromatase inhibitor to year 5, recurrence RRs favoured aromatase inhibitors significantly during years 0-1 (RR 0·74, 0·62-0·89) but not while both groups received aromatase inhibitors during years 2-4, or thereafter; overall in these trials, there were fewer recurrences with 5 years of aromatase inhibitors than with tamoxifen then aromatase inhibitors (RR 0·90, 0·81-0·99; 2p=0·045), though the breast cancer mortality reduction was not significant (RR 0·89, 0·78-1·03; 2p=0·11). In the comparison of 2-3 years of tamoxifen then aromatase inhibitor to year 5 versus 5 years of tamoxifen, recurrence RRs favoured aromatase inhibitors significantly during years 2-4 (RR 0·56, 0·46-0·67) but not subsequently, and 10-year breast cancer mortality was lower with switching to aromatase inhibitors than with remaining on tamoxifen (8·7% vs 10·1%; 2p=0·015). Aggregating all three types of comparison, recurrence RRs favoured aromatase inhibitors during periods when treatments differed (RR 0·70, 0·64-0·77), but not significantly thereafter (RR 0·93, 0·86-1·01; 2p=0·08). Breast cancer mortality was reduced both while treatments differed (RR 0·79, 0·67-0·92), and subsequently (RR 0·89, 0·81-0·99), and for all periods combined (RR 0·86, 0·80-0·94; 2p=0·0005). All-cause mortality was also reduced (RR 0·88, 0·82-0·94; 2p=0·0003). RRs differed little by age, body-mass index, stage, grade, progesterone receptor status, or HER2 status. There were fewer endometrial cancers with aromatase inhibitors than tamoxifen (10-year incidence 0·4% vs 1·2%; RR 0·33, 0·21-0·51) but more bone fractures (5-year risk 8·2% vs 5·5%; RR 1·42, 1·28-1·57); non-breast-cancer mortality was similar.

INTERPRETATION: Aromatase inhibitors reduce recurrence rates by about 30% (proportionately) compared with tamoxifen while treatments differ, but not thereafter. 5 years of an aromatase inhibitor reduces 10-year breast cancer mortality rates by about 15% compared with 5 years of tamoxifen, hence by about 40% (proportionately) compared with no endocrine treatment.

FUNDING: Cancer Research UK, Medical Research Council.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: MCF-7, T-47-D, ZR-75-1 human breast cancer cell lines are dependent on oestrogen for growth but can adapt to grow during long-term oestrogen deprivation. This serves as a model for identification of therapeutic targets in endocrine-resistant breast cancer. Methods: An overlooked complication of this model is that it involves more than non-addition of oestrogen, and inadequate attention has been given to separating molecular events associated with each of the culture manipulations. Results: Insulin and oestradiol were shown to protect MCF-7 cells against upregulation of basal growth, demonstrating a crosstalk in the growth adaptation process. Increased phosphorylation of p44/42MAPK and c-Raf reflected removal of insulin from the medium and proliferation of all three cell lines was inhibited to a lesser extent by PD98059 and U0126 following long-term oestrogen/insulin withdrawal, demonstrating a reduced dependence on the MAPK pathway. By contrast, long-term oestrogen/insulin deprivation did not alter levels of phosphorylated Akt and did not alter the dose-response of growth inhibition with LY294002 in any of the three cell lines. The IGF1R inhibitor picropodophyllin inhibited growth of all MCF-7 cells but only in the long-term oestrogen/insulin-deprived cells was this paralleled by reduction in phosphorylated p70S6K, a downstream target of mTOR. Long-term oestrogen/insulin-deprived MCF-7 cells had higher levels of phosphorylated p70S6K and developed increased sensitivity to growth inhibition by rapamycin. Conclusions: The greater sensitivity to growth inhibition by rapamycin in all three cell lines following long-term oestrogen/insulin deprivation suggests rapamycin-based therapies might be more effective in breast cancers with acquired oestrogen resistance. Keywords Akt, breast cancer cells, endocrine resistance, insulin, MAPK, MCF-7 cells, mTOR, oestrogen, oestrogen-deprived, PI3K, picropodophyllin, rapamycin, T-47-D cells, ZR-75-1 cells

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The health benefits of garlic have been proven by epidemiological and experimental studies. Diallyl disulphide (DADS), the major organosulfur compound found in garlic oil, is known to lower the incidence of breast cancer both in vitro and in vivo. The studies reported here demonstrate that DADS induces apoptosis in the MCF-7 breast-cancer cell line through interfering with cell-cycle growth phases in a way that increases the sub-G0 population and substantially halts DNA synthesis. DADS also induces phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane and activates caspase-3. Further studies revealed that DADS modulates the cellular levels of Bax, Bcl-2, Bcl-xL and Bcl-w in a dose-dependent manner, suggesting the involvement of Bcl-2 family proteins in DADS induced apoptosis. Histone deacetylation inhibitors (HDACi) are known to suppress cancer growth and induce apoptosis in cancer cells. Here it is shown that DADS has HDACi properties in MCF-7 cells as it lowers the removal of an acetyl group from an acetylated substrate and induces histone-4 (H4) hyper-acetylation. The data thus indicate that the HDACi properties of DADS may be responsible for the induction of apoptosis in breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen involvement in breast cancer has been established; however, the association between breast cancer and thyroid diseases is controversial. Estrogen-like effects of thyroid hormone on breast cancer cell growth in culture have been reported. The objective of the present study was to determine the profile of thyroid hormones in breast cancer patients. Serum aliquots from 26 patients with breast cancer ranging in age from 30 to 85 years and age-matched normal controls (N = 22) were analyzed for free triiodothyronine (T3F), free thyroxine (T4F), thyroid-stimulating hormone (TSH), antiperoxidase antibody (TPO), and estradiol (E2). Estrogen receptor ß (ERß) was determined in tumor tissues by immunohistochemistry. Thyroid disease incidence was higher in patients than in controls (58 vs 18%, P < 0.05). Subclinical hyperthyroidism was the most frequent disorder in patients (31%); hypothyroidism (8%) and positive anti-TPO antibodies (19%) were also found. Subclinical hypothyroidism was the only dysfunction (18%) found in controls. Hyperthyroidism was associated with postmenopausal patients, as shown by significantly higher mean T3 and T4 values and lower TSH levels in this group of breast cancer patients than in controls. The majority of positive ERß tumors were clustered in the postmenopausal patients and all cases presenting subclinical hyperthyroidism in this subgroup concomitantly exhibited Erß-positive tumors. Subclinical hyperthyroidism was present in only one of 6 premenopausal patients. We show here that postmenopausal breast cancer patients have a significantly increased thyroid hormone/E2 ratio (P < 0.05), suggesting a possible tumor growth-promoting effect caused by this misbalance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

14-3-3 is a family of highly conserved and ubiquitously expressed proteins in eukaryotic organisms. 14-3-3 isoforms bind in a phospho-serine/threonine-dependent manner to a host of proteins involved in essential cellular processes including cell cycle, signal transduction and apoptosis. We fortuitously discovered 14-3-3 zeta overexpression in many human primary cancers, such as breast, lung, and sarcoma, and in a majority of cancer cell lines. To determine 14-3-3 zeta involvement in breast cancer progression, we used immunohistochemical analysis to examine 14-3-3 zeta expression in human primary invasive breast carcinomas. High 14-3-3 zeta expression was significantly correlated with poor prognosis of breast cancer patients. Increased expression of 14-3-3 zeta was also significantly correlated with elevated PKB/Akt activation in patient samples. Thus, 14-3-3 zeta is a marker of poor prognosis in breast cancers. Furthermore, up-regulation of 14-3-3 zeta enhanced malignant transformation of cancer cells in vitro. ^ To determine the biological significance of 14-3-3 zeta in human cancers, small interfering RNAs (siRNA) were used to specifically block 14-3-3 zeta expression in cancer cells. 14-3-3 zeta siRNA inhibited cellular proliferation by inducing a G1 arrest associated with up-regulation of p27 KIP1 and p21CIP1 cyclin dependent kinase inhibitors. Reduced 14-3-3 zeta inhibited PKB/Akt activation while stimulating the p38 signaling pathway. Silencing 14-3-3 zeta expression also increased stress-induced apoptosis by caspase activation. Notably, 14-3-3 zeta siRNA inhibited transformation related properties of breast cancer cells in vitro and inhibited tumor progression of breast cancer cells in vivo. 14-3-3 zeta may be a key regulatory factor controlling multiple signaling pathways leading to tumor progression. ^ The data indicate 14-3-3 zeta is a major regulator of cell growth and apoptosis and may play a critical role in the development of multiple cancer types. Hence, blocking 14-3-3 zeta may be a promising therapeutic approach for numerous cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease. Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of all breast cancer deaths. Despite the name, very little is known about the role of inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-specific profile of peripheral blood leukocyte phenotype and function of T cells and dendritic cells and serum inflammatory cytokines. Emerging evidence suggests that host factors in the microenviromement may interact with underlying IBC genetics to promote the aggressive nature of the tumor. An integral part of the metastatic process involves epithelial to mesenchymal transition (EMT) where primary breast cancer cells gain motility and stem cell-like features that allow distant seeding. Interestingly, the IBC consortium microarray data found no clear evidence for EMT in IBC tumor tissues. It is becoming increasingly evident that inflammatory factors can induce EMT. However, it is unknown if EMT-inducing soluble factors secreted by activated immune cells in the IBC microenvironment canπ account for the absence of EMT in studies of the tumor cells themselves. We hypothesized that soluble factors from immune cells are capable of inducing EMT in IBC. We tested the ability of immune conditioned media to induce EMT in IBC cells. We found that soluble factors from activated immune cells are able to induce the expression of EMT-related factors in IBC cells along with increased migration and invasion. Specifically, the pro-inflammatory cytokines TNF-α, IL-6 and TGF-β were able to induce EMT and blocking these factors in conditioned media abated the induction of EMT. Surprisingly, unique to IBC cells, this process was related to increased levels of E-cadherin expression and adhesion, reminiscent of the characteristic tightly packed tumor emboli seen in IBC samples. This data offers insight into the unique pathology of IBC by suggesting that tumor immune interactions in the tumor microenvironment contribute to the aggressive nature of IBC implying that immune induced inflammation can be a novel therapeutic target. Specifically, we showed that soluble factors secreted by activated immune cells are capable of inducing EMT in IBC cells and may mediate the persistent E-cadherin expression observed in IBC. This data suggests that immune mediated inflammation may contribute to the highly aggressive nature of IBC and represents a potential therapeutic target that warrants further investigation.