987 resultados para antibiotic sensitivity
Resumo:
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when starved at high density. All of the identified M. xanthus lipopolysaccharide (LPS) O-antigen biosynthesis mutants exhibit defective motility and fruiting-body development. To determine the cause of these phenotypes, the cell-surface properties of the LPS O-antigen mutants were compared to wild-type cells. The binding characteristics of wild-type and LPS O-antigen-defective strains to cationic resin indicate that the mutant cell surfaces are more electronegative. Antibiotic sensitivity and hexadecane adhesion assays indicate that the wild-type M. xanthus cell surface is hydrophobic, supporting the idea that phospholipids are present in the outer leaflet of the outer membrane. The absence of the LPS O-antigen appears to expose charges associated with phospholipids and LPS core/lipid A, resulting in a dramatic alteration of the cell-surface organization and charge. These differences may affect the interaction of the LPS O-antigen mutants with their substratum and neighboring cells, leading to defects in social and single-cell gliding motility and thus, deficiencies in fruiting body formation. ^ The LPS O-antigen biosynthetic mutations also bypass the requirement of 4521 gene expression for the cell-density signal, A signal. The 4521 gene is overexpressed in these mutants. This 4521 overexpression is dependent on the sensor kinase SasS. Co-development with wild-type cells, or the addition of crude polysaccharides or membrane vesicles restores the ability of LPS O-antigen mutants to form fruiting bodies and lowers 4521 developmental gene expression to wild-type levels. Wild-type vesicles may attach or incorporate into the outer membrane of the mutants that lack LPS O-antigen, restoring a wild-type periplasmic status and allowing for normal levels of 4521 activity and fruiting body formation. We propose that the LPS composition and the configuration of the outer membrane are important elements for the complex behavioral response of M. xanthus fruiting body development. ^
Resumo:
U2449 is one of many invariant residues in the central loop of domain V of 23S rRNA, a region that constitutes part of the peptidyltransferase center of the ribosome. In Escherichia coli, this U is post-transcriptionally modified to dihydrouridine (D) and is the only D modification found in E.coli rRNAs. To analyze the role of this base and its modification in ribosomal function, all three base substitutions were constructed on a plasmid copy of the rrnB operon and assayed for their ability to support cell growth in a strain of E.coli lacking chromosomal rrn operons. Both purine substitution mutations were not viable. However, growth and antibiotic sensitivity of cells expressing only the mutant D2449C rRNA was indistinguishable from wild type. We conclude that while a pyrimidine is required at position 2449 for proper ribosomal function, the D modification is dispensable.
Resumo:
Despite recent reports of clonal strains of Pseudomonas aeruginosa in cystic fibrosis (CF) units, the need for routine microbiological surveillance remains contentious. Sputum was collected prospectively from productive patients attending the regional paediatric and adult CF units in Brisbane, Australia. All P. aeruginosa isolates were typed using pulsed-field gel electrophoresis. Spirometry, anthropometrics, hospitalisations and antibiotic sensitivity data were recorded. The first 100 sputum samples (first 50 patients at each clinic) harboured 163 isolates of P. aeruginosa. A total of 39 patients shared a common strain (pulsotype 2), 20 patients shared a strain with at least one other patient and 41 patients harboured unique strains. Eight patients shared a strain identical to a previously reported Australian transmissible strain (pulsotype 1). Compared with the unique strain group, patients harbouring pulsotype 2 were younger and had poorer lung function. Treatment requirements were similar in these two groups, as were the rates of multiresistance. In conclusion, 59% of patients harboured a clonal strain, supporting the need for routine microbiological surveillance. In contrast to previously described clonal strains, the dominant pulsotype was indistinguishable from nonclonal strains with respect to both colonial morphology and multiresistance. The clinical significance of clonal strains remains uncertain and requires longitudinal study.
Resumo:
Burkholderia cepacia is an opportunistic pathogen that colonises of the lungs of cystic fibrosis (CF) patients, with a frequently fatal outcome. Antibiotic resistance is common and highly transmissible epidemic strains have been described in the UK. 37 B. cepacia isolates from clinical and botanical sources were characterised via metabolic capabilities, antibiotic sensitivity, fatty acid methyl ester (FAME) profiles restriction digest analysis of chromosomal DNA by pulsed-gel electrophoresis (PFGE) (with the use of two separate restriction enzymes) and outer membrane protein (OMP) profiles. This revealed isolates of the UK CF epidemic strain to form a distinct group with a specific OMP profile. Cluster analysis of PFGE and FAME profiles revealed the species Burkholderia gladioli and Burkholderia vietnamiensis to be more closely related to each other and to laboratory strains of B. cepacia than to the CF epidemic strain considered a member of the latter species. The epidemic strain of B. cepacia may therefore be worthy of species definition in its own right. All the strains studied showed a high level of resistance to antibiotics, including the carbapenems. Considering this, carbapenemase production by isolates of B. cepacia was investigated. A metallo-β-lactamase from a clinical strain of B. cepacia was isolated and partially purified of using Cibacron blue F3GA-coupled agarose. The resulting preparation showed a single band of β-lactamase activity (pI 8.45) after analytical isoelectric focusing. The enzyme was particularly effective in the hydrolysis of imipenem. Meropenem, biapenem, cephaloridine, ceftazidime, benzylpenicillin, ampicillin and carbenicillin were hydrolysed at a lower rate. An unusual inhibition profile was noted. Inhibition by the metal ion chelators ethylene diamine tetra acetic acid and o-phenanthroline was reversed by addition of zinc, indicating a metallo-enzyme, whilst >90% inhibition was attainable with 0.1mM concentrations of tazobactam and clavulanic acid. A study of 8 other clinical isolates showed an enzyme of pI 8.45 to be present and inducible by imipenem in each case. This enzyme was assigned PCM-I (Pseudomonas cepacia metalloenzyme I).
Resumo:
In an increasingly hygiene concerned society, a major barrier to pet ownership is the perceived role of companion animals in contributing to the risk of exposure to zoonotic bacterial pathogens, such as Salmonella. Manifestations of Salmonella can range from acute gastroenteritis to perfuse enteric fever, in both humans and dogs. Dogs are heavily associated with asymptomatic carriage of Salmonella as the microorganism can persist in the lower intestines of this host which can be then excreted into the environment. Studies in to the asymptomatic carriage of Salmonella in dogs are somewhat dated and there is limited UK data. The current UK carriage rate in dogs was investigated in a randomised dog population and it was revealed that the carriage rate in this population was very low with only one household dog positive for the carriage of Salmonella enterica arizonae (0.2%), out of 490 dogs sampled. Salmonella serotypes share phenotypic and genotypic similarities which are captured in epidemiological typing methods. Therefore, in parallel to the epidemiological investigations, a panel of clinical canine (VLA, UK) and human (Aston University, UK) Salmonella isolates were profiled based on their phenotypic and genotypic characteristics; using API 20E, Biolog Microbial ID System, antibiotic sensitivity testing and PFGE, respectively. Antibiotic sensitivity testing revealed a significant difference between the canine and human isolates with the canine group demonstrating a higher resistance to the panel of antibiotics tested. Further metabolic capabilities of the strains were tested using the Biolog Microbial ID System, which reveal no clear association between the two host groups. However, coupled with Principle Component Analysis two canine isolates were discriminated from the entire population on the basis of a high up-regulation of two carbohydrates. API 20E testing revealed no association between the two host groups. A PFGE harmonised protocol was used to genotypically profile the strains. A dendrogram depicting PFGE profiles of the panel of Salmonella isolates was performed where similarities were calculated by Dice coefficient and represented by UPGMA clustering. Clustering of the profiles from canine isolates and human isolates (HPA, UK) was diverse representing a natural heterogeneity of the genus, additionally, no clear clustering of the isolates was observed between host groups. Clustering was observed with isolates from the same serotype, independent of host origin. Host adaption is a common phenomenon in certain Salmonella serotypes, for example S. Typhi in humans and S. Dublin in cattle. It was of interest to investigate potential host adaptive or restricted strains for canine host by performing adhesion and invasion assays on Dog Intestinal Epithelial Cells (DIECs) (WALTHAM®, UK) and human CaCo-2 (HPA, UK) cell lines. Salmonella arizonae and Enteritidis from an asymptomatic dog and clinical isolate, respectively, demonstrated a significantly high proportion of invasion in DIEC in comparison to human CaCo-2 cells and other tested Salmonella serotypes. This may be suggestive of a potential host restrictive strain as their ability to invade the CaCo-2 cell line was significantly lower than the other serotypes. In conclusion to this thesis the investigations carried out suggest that asymptomatic carriage of Salmonella in UK dogs is low however the microorganism remains as a zoonotic and anthroponotic pathogen based on phenotypic and genotypic characterisation however there may be potential for particular serotype to become host restricted as observed in invasion assays
Resumo:
Introducción: Las guías de Tokyo de 2013 lograron un consenso respecto al manejo antibiótico de la infección biliar. Sus recomendaciones están sustentadas en estudios internacionales de la epidemiología bacteriana, pero también recalcan la importancia de conocer la microbiología local para ajustar las guías de manejo. Materiales y métodos: Se diseñó un estudio descriptivo tipo serie de casos de pacientes tratados por colecistitis aguda moderada y severa en Méderi Hospital Universitario Mayor (HUM), describiendo los aislamientos microbiológicos y perfiles de resistencia de los cultivos de bilis tomados durante la cirugía. Resultados: Se analizaron 131 pacientes con una edad promedio de 63 años, la mayoría sin comorbilidades médicas. Se encontró un 48% de positividad en los cultivos, predominantemente enterobacterias siendo la más frecuente Escherichia coli, seguida de especies de Klebsiella y de Enterococcus. Los perfiles de resistencia evidenciaron un 93% de multisensibilidad antibiótica y se aislaron 4 microorganismos multirresistentes. No se encontraron diferencias en comorbilidades, alteraciones paraclínicas, presencia de síndrome biliar obstrutivo, pancreatitis o instrumentación previa de la vía biliar entre los pacientes con cultivo positivo y negativo. Conclusiones: Los resultados concuerdan con los reportes internacionales en cuanto a la flora bacteriana aislada, pero los perfiles de resistencia evidenciados en esta serie son diferentes a los que sustentan las guías de manejo de Tokio revisadas en 2013. Este hallazgo obliga a ajustar las guías de manejo institucionales con base en la epidemiología local.
Resumo:
Five isolates of Aeromonas sobria, collected from the diseased fish were selected for detection the pathogenicity following water-born infection method on silver barbs (Barbodes gonionotus) at the selected exposure dose 2.5x10⁸ CFU/ml which was standardized by preliminary test. In the experimental condition lesion and mortality were found in fishes. Among the isolate, Ass17 Ass19, Ass31 and Ass36 were successfully infected 20-60% fishes. Another isolate Ass20 was found non-pathogenic. Drug sensitivity test was performed by six antibiotics viz. Oxytetracycline, Oxolinic acid, Chloramphenicol, Stilphamethozazole, Streptomycin, Erythromycin. All the isolates showed variable reaction patterns to antibiotics. Most of the isolates were found sensitive to Oxytetracycline (OT), Oxolinic acid (OA) and Chloramphenicol (C) but resistance to Erythromycin and Sulphamethoxazole (SXT). Isolate Ass31 found resistant to Oxolinic acid.
Resumo:
Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.
Antibiotic resistance of Staphylococcus aureus strains isolated from fish processing factory workers
Resumo:
One hundred and twenty two strains of Staphylococcus aureus isolated from throats and palms of 39 workers from 6 fish processing factories situated in and around Cochin were tested for their sensitivity to nine commonly used antibiotics-ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin, penicillin, polymyxin-B, streptomycin and tetracycline. Highest percentage of resistance was observed towards ampicillin followed by penicillin i.e. 64.75% and 59.84%. Resistance towards other antibiotics like tetracycline, polymyxin-B, erythromycin, kanamycin, neomycin, chloramphenicol and streptomycin were shown by 22.95, 16.39, 7.38, 5.74, 3.28 and 1.64% of the isolates respectively.
Resumo:
The inoculum effect (IE) refers to the decreasing efficacy of an antibiotic with increasing bacterial density. It represents a unique strategy of antibiotic tolerance and it can complicate design of effective antibiotic treatment of bacterial infections. To gain insight into this phenomenon, we have analyzed responses of a lab strain of Escherichia coli to antibiotics that target the ribosome. We show that the IE can be explained by bistable inhibition of bacterial growth. A critical requirement for this bistability is sufficiently fast degradation of ribosomes, which can result from antibiotic-induced heat-shock response. Furthermore, antibiotics that elicit the IE can lead to 'band-pass' response of bacterial growth to periodic antibiotic treatment: the treatment efficacy drastically diminishes at intermediate frequencies of treatment. Our proposed mechanism for the IE may be generally applicable to other bacterial species treated with antibiotics targeting the ribosomes.
Resumo:
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Nitrofuran antibiotic residues in food continue to be of international concern. The finding of sources of semicarbazide (SEM), other than through the misuse of nitrofurazone, present a challenge to the use of SEM as a definitive marker residue for this drug. Detection of intact (parent) nitrofurazone would avoid confusion over the source of SEM residues. Broiler chickens were fed sub-therapeutic nitrofuran-containing diets and their tissues were analysed for parent compounds and metabolites by liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Depletion half-lives in muscle were longer for tissue-bound metabolite residues, 3.4 days - 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) - to 4.5 days (SEM), than total metabolite residues, 2.0 days (AOZ) to 3.2 days (SEM). Metabolite concentrations were higher in eyes than in muscle. Metabolite half-lives in eyes ranged from 8.5 days (1-aminohydantoin (AHD)) to 20.3 days (SEM). Nitrofuran parent compounds were also detected in eyes. Furaltadone was detected in single eyes after 21 days' withdrawal of a 6 mg kg -1 furaltadone diet. When 50 eyes from broilers containing metabolites in muscle close to the 1 µg kg -1 minimum required performance level (MRPL) were pooled into single samples, 1.2 ng of furazolidone and 31.1 ng of furaltadone were detected, but nitrofurazone was not detected due to the long depletion half-life of SEM in muscle. Further studies are required to improve LC-MS/MS nitrofurazone sensitivity and refine the sample size necessary to use nitrofurazone detection in pooled eyes as a complement to SEM detection in muscle.
Resumo:
Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mV/Δlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL−1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ± 0.7%), fast response, good sensitivity (47 mV/Δlog([ENR]/M), wide linear range (1.0 × 10−5–1.0 × 10−3 M), low detection limit (0.9 µg mL−1), and a stable baseline for a 5 × 10−2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.