916 resultados para alkali-tolerant xylanase
Resumo:
The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.
Resumo:
This research addresses efficient use of the available energy in resource constrained mobile sensor nodes to prevent early depletion of the battery and maximize the packet delivery rate. This research contributes two energy-aware enhancement strategies to improve the network lifetime and delivery probability for energy constrained applications in the delay-tolerant networking environment.
Resumo:
We consider systems composed of a base system with multiple “features” or “controllers”, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a way that guarantees the “maximal” use of each feature. The methodology is based on the notion of “conflict-tolerant” features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based composition scheme for such features, which ensures that each feature is maximally utilized. We also provide a formal framework for specifying, verifying, and synthesizing such features. In particular we obtain a compositional technique for verifying systems developed in this framework.
Resumo:
This paper addresses the problem of detecting and resolving conflicts due to timing constraints imposed by features in real-time systems. We consider systems composed of a base system with multiple features or controllers, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a modular manner based on the notion of conflict tolerant features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority based scheme for composing such features. This guarantees the maximal use of each feature. We provide a formal framework for specifying such features, and a compositional technique for verifying systems developed in this framework.
Resumo:
Unexpected swelling induced in foundation soils can cause distress to structures founded on them. In this paper, the swelling of kaolinitic soils due to interaction with alkali solution has been reported. The induced swelling is attributed to the formation of new minerals, which has been confirmed by X-ray diffraction patters and SEM studies. To understand the effect of alkali concentration and duration of interaction, two series of consolidation experiments have been carried out. In series 1, the specimen were remoulded with water and inundated with alkali solutions and in series 2, the specimen were remoulded and inundated with same alkali solutions. A steep compression during loading cycle and no abnormal swelling during unloading cycle has been noticed for the specimen remoulded with water and inundated with 1 N NaOH solutions. The steep compression is due to the segregation or break down of clay minerals due to alkali interactions. In case of specimen inundated with 4 N NaOH solutions, abnormal swelling has been observed during unloading cycle of the consolidation test. New minerals are formed on interaction of soil with 4 N solution as confirmed by X-ray diffraction patterns. These minerals are known to have very fine pores and possess high water holding capacity. The differences in the amount of swelling of samples remoulded with water and remoulded with alkali solution are due to variations in the concentration of alkali and duration of interaction.
Resumo:
A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.
Resumo:
Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.
Resumo:
We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.
Resumo:
This paper addresses the problem of detecting and resolving conflicts due to timing constraints imposed by features in real-time and hybrid systems. We consider systems composed of a base system with multiple features or controllers, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a modular manner based on the notion of conflict-tolerant features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based scheme forcomposing such features. This guarantees the maximal use of each feature. We provide a formal framework for specifying such features, and a compositional technique for verifying systems developed in this framework.