938 resultados para agricultural residues


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulatory authorities, the food industry and the consumer demand reliable determination of chemical contaminants present in foods. A relatively new analytical technique that addresses this need is an immunobiosensor based on surface plasmon resonance (SPR) measurements. Although a range of tests have been developed to measure residues in milk, meat, animal bile and honey, a considerable problem has been encountered with both serum and plasma samples. The high degree of non-specific binding of some sample components can lead to loss of assay robustness, increased rates of false positives and general loss of assay sensitivity. In this paper we describe a straightforward precipitation technique to remove interfering substances from serum samples to be analysed for veterinary anthelmintics by SPR. This technique enabled development of an assay to detect a wide range of benzimidazole residues in serum samples by immunobiosensor. The limit of quantification was below 5 ng/ml and coefficients of variation were about 2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an assay for the detection of streptomycin residues in pasteurized whole milk using an optical biosensor (Biacore) is reported. Streptomycin-adipic hydrazide coupled to bovine thyroglobulin was used to produce a sheep polyclonal antibody. The antibody displayed excellent cross-reactivity with dihydrostreptomycin (106%). There was no significant cross-reaction with other aminoglycosides or common antibiotics. Streptomycin was also immobilized onto a CM5 sensor chip to provide a stable, reusable surface. The developed assay permitted the direct analysis of whole milk samples (similar to3.5% fat) without prior centrifugation and defatting. Results were available in 5 min. The limit of detection of the assay was determined as 4.1 ng/mL, well below the European maximum residue limit (MRL) of 200 ng/mL. Repeatability (or coefficient of variation) between runs was determined as 3.5% (100 ng/mL; 0.5 x MRL), 5.7% (200 ng/mL; MRL), and 7.6% (400 ng/mL; 2 x MRL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid imununoassay using an optical biosensor (BIAcore(TM)) for determining the presence of sulphadiazine (SDZ) residues in pig bile was developed. SDZ,cas immobilised onto the surface of a dextran-coated silicon chip and a solution containing SDZ antibody, sample and buffer was injected over the chip surface. The level of antibody binding to the chip was determined after 20 s and the surface of the chip was then regenerated over a 1-min period prior to another sample injection taking place. Standard curves were constructed to allow quantification of SDZ presence in sample. Concentrations ranging from 0 to 10.64 mu g ml(-1) SDZ were detected in bile samples taken from experimentally fed pigs and randomly selected pigs taken from a local slaughterhouse. These results were compared to the concentrations of SDZ detected by high-performance liquid chromatography: in associated tissues. When concentrations in bile exceeded 0.6 mu g ml(-1) SDZ, the corresponding edible tissue was above the maximum residue level (MRL), i.e. 0.1 mu g g(-1) in 13 out of 14 cases. Wizen the bile concentration was less than 0.6 mu ml(-1) the associated tissue concentrations never exceeded rite MRL. This experiment has indicated that biosensor analysis of bile is a highly effective method for detecting violative SDZ residues in meat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review evaluates evidence of the impact of uncomposted plant residues, composts, manures, and liquid preparations made from composts (compost extracts and teas) on pest and disease incidence and severity in agricultural and horticultural crop production. Most reports on pest control using such organic amendments relate to tropical or and climates. The majority of recent work on the use of organic amendments for prevention and control of diseases relates to container-produced plants, particularly ornamentals. However, there is growing interest in the potential for using composts to prevent and control diseases in temperate agricultural and horticultural field crops and information concerning their use and effectiveness is slowly increasing. The impact of uncomposted plant residues, composts, manures, and compost extracts/teas on pests and diseases is discussed in relation to sustainable temperate field and protected cropping systems. The factors affecting efficacy or such organic amendments in preventing and controlling pests and disease are examined and the mechanisms through which control is achieved are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The total phenol and anthocyanin contents of black currant pomace and black currant press residue (BPR) extracts, extracted with formic acid in methanol or with methanol/water/acetic acid, were studied. Anthocyanins and other phenols were identified by means of reversed phase HPLC, and differences between the two plant materials were monitored. In all BPR extracts, phenol levels, determined by the Folin-Ciocalteu method, were 8-9 times higher than in the pomace extracts. Acid hydrolysis liberated a much higher concentration of phenols from the pomace than from the black currant press residue. HPLC analysis revealed that delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were the major anthocyanins and constituted the main phenol class (approximate to 90%) in both types of black currant tissues tested. However, anthocyanins were present in considerably lower amounts in the pomace than in the BPR. In accordance with the total phenol content, the antioxidant activity determined by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) radical cation, the ABTS(center dot+) assay, showed that BPR extracts prepared by solvent extraction exhibited significantly higher (7-10 times) radical scavenging activity than the pomace extracts, and BPR anthocyanins contributed significantly (74 and 77%) to the observed high radical scavenging capacity of the corresponding extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and spectroscopic methods were used to characterize organic matter transformations during the composting process. Four different residue mixtures were studied: P1 - garden trimmings (GT) only, P2 - GT plus fresh cattle manure, P3 - GT plus orange pomace and P4 - GT plus filter cake. The thermophilic phase was not reached in PI compost, but the P2, P3 and P4 composts showed all three typical process phases. The thermophilic phase and CEC/C ratio stabilized after 90 days, while C/N ratio and the ash content stabilized after 60 days. The increasing E(4)/E(6) ratio indicated oxidation reactions occurring during the process in the material from P2, P3 and P4. The (13)C NMR and FTIR results suggested extraction of both pectin and lignin in the HA-like fraction. The CEC/C ratio, temperature and E(4)/E(6) ratio showed that within 90 days P2, P3 and P4 composts were humified. However, material from P1 did not show characteristics of humified compost. From these data, it is apparent that C/N ratio and ash content are not reliable methods for monitoring the composting process. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar a composição nutricional dos cogumelos produzidos em substratos alternativos à base de resíduos agrícolas e agroindustriais da Amazônia. Determinou-se C, N, pH, umidade, sólidos solúveis, proteína, lipídios, fibra total, cinzas, carboidratos e energia. Os substratos foram formulados a partir de serragem de Simarouba amara Aubl. (marupá), Ochroma piramidale Cav. ex. Lam. (pau de balsa) e do estipe de Bactris gasipaes Kunth (pupunheira) e de Saccharum officinarum (cana-de-açúcar). Os resultados demonstraram que: a composição nutricional do P. ostreatus variou com o substrato de cultivo e; O P. ostreatus pode ser considerado um importante alimento devido suas características nutricionais: altos teores de proteínas, carboidratos metabolizáveis e fibras; baixos teores de lipídios e de calorias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Áreas agrícolas trocam enormes fluxos de CO2, oferecendo uma oportunidade para mitigar o efeito estufa. Neste trabalho, estudou-se o potencial de sequestro de carbono em razão da conversão no manejo das principais atividades agrícolas do Brasil. Dados de vários estudos têm indicado que no sistema soja/milho e nas respectivas rotações, ocorre um sequestro de carbono no solo significativo ao longo dos anos de conversão do plantio convencional para o plantio direto, com uma média de 0,41 Mg C ha-1 ano-1. O mesmo efeito tem sido observado nos canaviais, porém há maiores acúmulos de carbono no solo quando as áreas de cana-de-açúcar são convertidas da colheita baseada na queima para a mecanizada, em que grandes quantidades de palha são deixadas na superfície do solo (1,8 Mg C ha-1 ano-1). Esse maior potencial de acúmulo de carbono no solo nos canaviais, comparado com outras culturas, está diretamente relacionado com a maior produção primária dessa cultura. Apesar disso, muito desse potencial de sequestro é perdido, uma vez que os canaviais são reformados, sob preparo intensivo do solo. As áreas de pasto mostram uma depleção nos estoques de carbono, quando convertidas de áreas naturais; porém, a integração dessas áreas com agricultura pode promover o aumento nos estoques de carbono do solo. Os trabalhos têm mostrado que as principais atividades agrícolas do Brasil possuem um grande potencial de mitigação, especialmente na forma de acúmulo de carbono no solo, sendo uma oportunidade para estratégias futuras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decay rate of six insecticides (azinphos methyl, diazinon, dimethoate, methidathion, parathion methyl, and quinalphos) used to control Dacus oleae was studied. Degradation of pesticides showed pseudo-first-order kinetics with correlation coefficients ranging between -0.936 and -0.998 and half-lives between 4.3 days for dimethoate and 10.5 days for methidathion. Residues in olive oil were greater than on olives, with a maximum concentration factor of 7. Dimethoate was the only pesticide with lower residues in the oil than on the fruits. Olive washing affects pesticide residues ranging from no reduction to a 45% decrease. During 8 months of storage of the olive oil, diazinon, dimethoate, parathion methyl, and quinalphos did not show any remarkable difference, while methidathion and azinphos methyl showed a moderate decrease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type of tillage and crop systems used can either degrade or cause a recovery of the structure of agricultural soils. The objective of this study was to determine the structural stability of the soil using mean weight diameter (MWD) of soil aggregates in three different periods of a succession of crops consisting of beans/cover plants/maize under no tillage (NT) and conventional tillage (CT) management systems. Soils were sampled at 0- to 5-cm and 5- to 15-cm depths in three periods (P1, P2, P3): 1) November 2002 (spring/summer), 2) April 2003 (beginning of autumn), and 3) December 2003 (end of spring/beginning of summer). Aggregate stability was determined by wet sieving. The effects of the tillage systems, vegetal residues, and sampling depths on the structural stability of the aggregates were assessed and then related to organic matter (OM) contents. Aggregate stability showed temporal variation as a function of OM contents and sampling period. No tillage led to high MWD values in all study periods. The lowest MWD values and OM contents were observed 4 months after the management of the residues of cover plants. This finding is consistent with the fact that at the time of the samplings, most of the OM had already mineralized. The residues of sunn-hemp, millet, and spontaneous vegetation showed similar effects on soil aggregate stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gas chromatography-mass-selective (GC-MS) detection method to determine buprofezin, pyridaben, and tebufenpyrad on the pulp, peel, and whole fruit of clementines is described. The extraction/partition procedure was performed in one step and no cleanup was necessary with the GC-MS in the SIM-mode pesticide determination. Recovery ranged from 75 to 124% with coefficients of variance ranging between 1 and 13%. The limit of determination was 0.01 mg/kg for all pesticides. The field trials showed a similar degradative behavior for all active ingredients (AI), with a great residue decrease during the first week and stability in the second. Just after treatment buprofezin and tebufenpyrad showed lower residues than the maximum residue limit (MRL) fixed in Italy, while pyridaben was below the MRL after a week.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Freshly harvested lemons [(Citrus limon (L.) Burm)] were dipped 3 min in water with and without imazalil (IMZ) at 50, 100, and 200 ppm at 50 degrees C and at 1000 ppm IMZ at 20 degrees C. Following treatments fruit were kept at 9 degrees C and 90%-95% relative humidity (RH) for 13 weeks and an additional week at 21 degrees C and ca. 75% RH, to simulate a marketing period (SMP). No decay control was observed with fruit dipped in water at 50 degrees C. In contrast, IMZ treatments provided 90%-96% control of Penicillium rots during cold storage and SMP. Fungi other than Penicillium spp. were also found in all samples as differences among treatments were negligible. IMZ treatment caused some external damage to the fruit (peel browning), and the percentage of damaged fruit was related to the amount of active ingredient (AI) present in it. Dipping in 200 or 1000 ppm IMZ promoted off-flavor development after 10 weeks of storage, and fruit were judged to be unacceptable for consumption after 13 weeks of cold storage. After 1000 ppm IMZ dipping at 20 degrees C, residue concentration in fruit was 8.20 ppm; this value doubled that found in a previous investigation on lemons treated with comparable IMZ levels. Residue concentrations in fruit after treatment at 50 degrees C was strictly related to the amount of fungicide employed. After 13 weeks Al residues in fruit decreased to average ca. 35% of the initial values. During the 1 week SMP, residue levels decreased by a further ca. 25%. It was concluded that it is possible to achieve significant control of decay in lemons during longterm storage by dipping fruit in 50 ppm IMZ mixtures at 50 degrees C. Such treatment should be advised to remarkably reduce potential pollution in the environment due to packinghouse wastewater disposal.