993 resultados para active contour
Resumo:
In this paper, the optimal design of an active flow control device; Shock Control Bump (SCB) on suction and pressure sides of transonic aerofoil to reduce transonic total drag is investigated. Two optimisation test cases are conducted using different advanced Evolutionary Algorithms (EAs); the first optimiser is the Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPMOEA) based on canonical Evolutionary Strategies (ES). The second optimiser is the HAPMOEA is hybridised with one of well-known Game Strategies; Nash-Game. Numerical results show that SCB significantly reduces the drag by 30% when compared to the baseline design. In addition, the use of a Nash-Game strategy as a pre-conditioner of global control saves computational cost up to 90% when compared to the first optimiser HAPMOEA.
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.
Resumo:
stract This paper proposes a hybrid discontinuous control methodology for a voltage source converter (VSC), which is used in an uninterrupted power supply (UPS) application. The UPS controls the voltage at the point of common coupling (PCC). An LC filter is connected at the output of the VSC to bypass switching harmonics. With the help of both filter inductor current and filter capacitor voltage control, the voltage across the filter capacitor is controlled. Based on the voltage error, the control is switched between current and voltage control modes. In this scheme, an extra diode state is used that makes the VSC output current discontinuous. This diode state reduces the switching losses. The UPS controls the active power it supplies to a three-phase, four-wire distribution system. This gives a full flexibility to the grid to buy power from the UPS system depending on its cost and load requirement at any given time. The scheme is validated through simulation using PSCAD.
Resumo:
This thesis inquires into possibilities for young children‘s active citizenship as provoked through a practice of social justice storytelling with one Preparatory1 class of children aged five to six years. The inquiry was practitioner-research, through a living educational theory approach cultivating an interrelational view of existing with others in evolving processes of creation. Ideas of young children‘s active citizenship were provoked and explored through storytelling, by a storytelling teacher-researcher, a Prep class of children and their teacher. The three major foci of the study were practice, narrative and action. A series of storytelling workshops with a Prep class was the practice that was investigated. Each workshop began with a story that made issues of social justice visible, followed by critical discussion of the story, and small group activities to further explore the story. The focus on narrative was based on the idea of story as a way knowing. Stories were used to explore social justice issues with young children. Metanarratives of children and citizenship were seen to influence possibilities for young children‘s active citizenship. Stories were purposefully shared to provoke and promote young children‘s active citizenship through social actions. It was these actions that were the third focus of the study. Through action research, a social justice storytelling practice and the children‘s responses to the stories were reflected on both in action and after. These reflections informed and shaped storytelling practice. Learning in a practice of social justice storytelling is explained through living theories of social justice storytelling as pedagogy. Data of the children‘s participation in the study were analysed to identify influences and possibilities for young children‘s active citizenship creating a living theory of possibilities for young children‘s active citizenship.