906 resultados para Zinc hexacyanoferrate
Resumo:
Nickel zinc hydroxysalt–Pt metal nanoparticle composite was prepared by intercalation of the anionic platinum complex, [PtCl6]2− in nickel zinc hydroxysalt through ion exchange reaction and subsequent reduction of the platinum complex by ethanol. Powder X-ray diffraction and microscopy studies indicate that the process of reduction of the platinum complex in the interlayer region of the anionic clay takes place topotactically without destroying the layers.
Resumo:
Three new three-dimensional zinc-triazolate-oxybis(benzoate) compounds. [{Zn-3(H2O)(2)}{C12H8O(COO)(2)}(2)-{C2H2N3}(2)]center dot 2H(2)O(I), [Zn-7{C12H8O(COO)(2)}(4){C2H2N3}(6)]center dot H2O, (II), and[{Zn-5(OH)(2)}{C12H8O(COO)(2)}(3){C2H2N3}(2)] (III), synthesized by a hydrothermal reaction of a mixture of Zn(OAc)(2)center dot 2H(2)O, 4,4'-oxybis(benzoic acid), 1,2,4-triazole, NaOH, and water. Compound I has an interpenetrated diamond structure and II and III have pillared-layer related structures. The formation of a hydrated phase (I) at low temperature and a completely dehydrated phase (III) at high temperature suggests the importance of thermodynamic factors in the formation of three compounds. Transformation studies of I in the presence of water shows the formation of a simple Zn-OBA compound, [Zn(OBA)(H2O)] (IV), at 150 and 180 degrees C and compound III at 200 degrees C. The compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction. thermogravimetric analysis, IR, and photoluminescence studies.
Resumo:
In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.
Resumo:
Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment. A factorial combination of treatments consisting of +/- fumigation, +/- AMF inoculation with Glomus spp., +/- P and +/- Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder. Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R-2 = 0.95 for P and 0.85 for Zn, P < 0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively. This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.
Resumo:
Room-temperature zinc ion-conducting molten electrolytes based on acetamide, urea, and zinc perchlorate or zinc triflate have been prepared and characterized by various physicochemical, spectroscopic, and electrochemical techniques. The ternary molten electrolytes are easy to prepare and can be handled under ambient conditions. They show excellent stability, high ionic conductivity, relatively low viscosity, and other favorable physicochemical and electrochemical properties that make them good electrolytes for rechargeable zinc batteries. Specific conductivities of 3.4 and 0.5 mS cm(-1) at 25 degrees C are obtained for zinc-perchlorate-and zinc-triflate-containing melts, respectively. Vibrational spectroscopic data reveal that the free ion concentration is high in the optimized composition. Rechargeable Zn batteries have been assembled using the molten electrolytes, with gamma-MnO2 as the positive electrode and Zn as the negative electrode. They show excellent electrochemical characteristics with high discharge capacities. This study opens up the possibility of using acetamide-based molten electrolytes as alternate electrolytes in rechargeable zinc batteries. (C) 2009 The Electrochemical Society.
Resumo:
An analysis of the recently reported cDNA derived amino acid sequences of mouse (Kleene and Flynn, J. Biol. Chem. , 17272–17277, 1987) and rat (Luersson Image ,Nucl. Acids Res. Image , 3585, 1989). TP2 has revealed the presence of two potential zinc finger motifs involving cysteine and histidine residues. TP2, as purified from rat elongating spermatids, is shown here to contain 0.2 atoms of zinc bound per molecule of the protein by atomic absorption spectroscopy. On incubation with 10 μM ZnCl2, Image , and subsequent exhaustive dialysis, TP2 had 2 atoms of zinc bound per molecule. The involvement of cysteine residues of TP2 in coordination with zinc was also suggested by the observation that TP2 could be labeled, Image , with iodoacetamidofluorescein only after preincubation of spermatid nuclei with EDTA. The zinc finger domains of TP2 may play an important role in initiation of chromatin condensation and /or cessation of transcriptional activity during mammalian spermiogenesis. DTT, Dithiothreitol; IAF, Iodoacetamido-fluorescein; SDS, Sodium dodecyl sulfate; PAGE, Polyacrylamide gel electrophoresis; PMSF, Phynyl methyl sulfonyl fluoride
Resumo:
Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.
Resumo:
A solvothermal reaction of ZnO, boric acid (B(OH)(3)), and aliphatic airlines in a water-pyridine mixture gave four zinc borate phases of different dimensionalities: [Zn(B4O8H2)(C3H10N2)], I (one-dimensional); [Zn(B4O8H2)(C3H10N2)] H2O, II (two-dimensional); [Zn(B5O10H3)(C10H24N4)]center dot H2O, III (two-dimensional): and [Zn-2(B8O15H2)(C3H10N2)(2)], IV (three-dimensional). The structures are formed by the connectivity involving polyborate chains and layers with Zn2+ species. In all the compounds, the amine molecules act its file ligand binding either the same or different zn centers. The formation of two different structures, II and IV, from the same amine by varying the reaction time is noteworthy. Transformation studies on II indicate that the formation of IV. from II, is facile and has been investigated for the first time. Two of file compounds, I and III, exhibit activity for second-order nonlinear optical behavior. The UV exposure of the sample indicates the absorption of all the UV radiation suggesting that the zinc borate compounds could be exploited for UV-blocking applications. The compounds have been characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, UV-vis, photoluminescence, and NMR studies.
Resumo:
A three-dimensional zinc arsenate with an interrupted zeolitic framework (-IIO), [C4N3H16](2)[Zn-5(AsO4)(4)(HAsO4)(2)], I has been synthesized solvothermally. The structure is built up from ZnO4, AsO4 and HAsO4 tetrahedral units connected alternatively through their vertices forming the 3-D structure possessing one-dimensional channels bound by 10 T-atoms (T = Zn, As), The framework density of the structure is 10.4 T-atoms which indicates considerable openness in its structure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In each of the zinc(II) complexes bis(acetylacetonato-kappa(2)O,O')(1,10-phenanthroline-kappa(2)N,N')zinc(II), [Zn(C(5)H(7)O(2))(2)(C(12)H(8)N(2))], (I), and bis(acetylacetonato-kappa(2)O,O')(2,2'-bipyridine-kappa(2)N,N')zinc(II), [Zn(C(5)H(7)O(2))(2)(C(10)H(8)N(2))], (II), the metal center has a distorted octahedral coordination geometry. Compound (I) has crystallographically imposed twofold symmetry, with Z' = 0.5. The presence of a rigid phenanthroline group precludes intramolecular hydrogen bonding, whereas the rather flexible bipyridyl ligand is twisted to form an intramolecular C-H...O interaction [the chelated bipyridyl ligand is nonplanar, with the pyridyl rings inclined at an angle of 13.4 (1) degrees]. The two metal complexes are linked by dissimilar C-H...O interactions into one-dimensional chains. The present study demonstrates the distinct effects of two commonly used ligands, viz. 1,10-phenanthroline and 2,2'-bipyridine, on the structures of metal complexes and their assembly.
Resumo:
Sol-gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400-500 degrees C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C-V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (P-s) and coercive field were 0.15 mu C/cm(2) and 20 kV/cm, respectively, confirming the presence of ferroelectricity.
Resumo:
We report here, the study carried out on piezoelectric thin film for MEMS/Microsensor applications. The study includes characterization of sputtered thin film using indirect methods and comparison of behavior using cantilever technique for the confirmation of piezoelectric property. A suitable experimental setup was designed and fabricated for subjecting the cantilever to vibrate. The data was recorded for piezoelectric thin films deposited with different compositions. It is clearly evident that the direct method is inexpensive and easier for determining the quality of the deposited piezoelectric thin film.