968 resultados para X-ray Diffraction, Scanning Electron Microscopy, Infrared Emission Spectroscopy, Raman Spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 degreesC for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X-ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.
Resumo:
The effect of LiNbO3 and KNbO3 seeds on the microstructure and dielectric characteristics of PMN ceramic prepared by columbite route have been investigated with the addition of 0, 1, and 2-wt% of seeds. X-ray diffraction, Scanning Electron Microscopy and an impedance analyzer were used to characterize the influence of seeds on physical characteristics and dielectric properties of PMN. LiNbO3 -seeded PMN samples present a significant increase in the amount of perovskite phase. The addition of LiNbO3 seeds in sintered PMN ceramics at 1100degreesC during 4 h causes a decrease in the porosity and the amount of pyrochlore phase. Weight losses during sintering of PMN ceramics are suppressed more significantly for LiNbO3 -seeded PMN. T-m of PMN ceramics changes with seeds concentration. KNbO3 seeds displace T-m to lower temperature whereas LiNbO3 causes its elevation. Dielectric constants of approximately 13,000 at 1 kHz was measured at -5degreesC in PMN ceramics with 1-wt% of LiNbO3 seeds.
Resumo:
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.
Resumo:
A new synthetic route for producing monodispersed and single crystal acicular goethite particles with small particle size and a high axial ratio adequate for use as a high density magnetic recording media precursor is reported. It essentially consists of the hydrolysis of alkaline Fe-III suspensions in the presence of carbonate by a three-step procedure, the formation of ferrihydrite primary particles, the ferrihydrite dissolution and nucleation of goethite, and the growth of the goethite nuclei. Changing the temperature of heating during ageing achieved a separation of the two last stages. X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and surface area data have been used to determine the mechanism responsible for the formation of goethite particles with controlled size and shape. The best conditions to prepare monodispersed goethite particles have been established. The results show that uniform goethite particles of (a) 60 nm length with an axial ratio of 6 and (b) 230 nm length with a high axial ratio of 10, can be obtained by using an [OH]/[Fe] molar ratio of 0.35 in the initial suspensions with carbonate or sodium hydroxide, respectively. The [OH]/[Fe] molar ratio determines the particle size and elongation by controlling the hydrolysis reaction rate, while the carbonate ions promote a constant [OH] in the solution, keeping the pH around 10 during the entire synthesis process. This procedure, associated with the appropriate temperature control, leads, under certain conditions, to highly homogeneous goethite particles with sizes smaller than those obtained using sodium hydroxide with the same [OH]/[Fe] ratio.
Resumo:
Pb1-XLaXTiO3 thin films, (X = 0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300degreesC range in an O-2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Pb1-xLaxTiO3 thin films, (X=0.0; 13 and 0.27mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si(111), Si(100) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500°C for 3 hours. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz. Electrical characterizations of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films is discussed.
Resumo:
Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.
Resumo:
The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in rutheno-cuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behavior are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. The first treatment results in the immediate formation of Sr2GdRuO 6. Using the CuO composition as a precursor, we produced Ru-1212. To turn it metallic and superconductor, besides the previous treatment, a final sinterization is carried out in oxygen flow for several days. Three Ru-1212 samples were produced by varying the last sinterization time (two, four, and six days under oxygen flow). Through measurements of x-ray diffraction, scanning electron microscopy, differential thermal analysis, magnetic susceptibility and mechanical spectroscopy, it was studied the influence of the treatments under oxygen atmosphere on the structural and superconducting properties of the material.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.