944 resultados para Working memory deficits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Working memory, commonly defined as the ability to hold mental representations on line transiently and to manipulate these representations, is known to be a core deficit in schizophrenia. The aim of the present study was to investigate the visuo-spatial component of the working memory in schizophrenia, and more precisely to what extent the dynamic visuo-spatial information processing is impaired in schizophrenia patients. For this purpose we used a computerized paradigm in which 29 patients with schizophrenia (DSMIV, Diagnostic Interview for Genetic Studies) and 29 age and sex matched control subjects (DIGS) had to memorize a plane moving across the computer screen and to identify the observed trajectory among 9 plots proposed together. Each trajectory could be seen max. 3 times if needed. The results showed no difference between schizophrenia patients and controls regarding the number of correct trajectory identified after the first presentation. However, when we determine the mean number of correct trajectories on the basis of 3 trials, we observed that schizophrenia patients are significantly less performant than controls (Mann-Whitney, p _ 0.002). These findings suggest that, although schizophrenia patients are able to memorize some dynamic trajectories as well as controls, they do not profit from the repetition of the trajectory presentation. These findings are congruent with the hypothesis that schizophrenia could induce an unbalance between local and global information processing: the patients may be able to focus on details of the trajectory which could allow them to find the right target (bottom-up processes), but may show difficulty to refer to previous experience in order to filter incoming information (top-down processes) and enhance their visuo-spatial working memory abilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Until recently, neurosurgeons eagerly removed cerebellar lesions without consideration of future cognitive impairment that might be caused by the resection. In children, transient cerebellar mutism after resection has lead to a diminished use of midline approaches and vermis transection, as well as reduced retraction of the cerebellar hemispheres. The role of the cerebellum in higher cognitive functions beyond coordination and motor control has recently attracted significant interest in the scientific community, and might change the neurosurgical approach to these lesions. The aim of this study was to investigate the specific effects of cerebellar lesions on memory, and to assess a possible lateralisation effect. METHODS: We studied 16 patients diagnosed with a cerebellar lesion, from January 1997 to April 2005, in the "Centre Hospitalier Universitaire Vaudois (CHUV)", Lausanne, Switzerland. Different neuropsychological tests assessing short term and anterograde memory, verbal and visuo-spatial modalities were performed pre-operatively. RESULTS: Severe memory deficits in at least one modality were identified in a majority (81%) of patients with cerebellar lesions. Only 1 patient (6%) had no memory deficit. In our series lateralisation of the lesion did not lead to a significant difference in verbal or visuo-spatial memory deficits. FINDINGS: These findings are consistent with findings in the literature concerning memory deficits in isolated cerebellar lesions. These can be explained by anatomical pathways. However, the cross-lateralisation theory cannot be demonstrated in our series. The high percentage of patients with a cerebellar lesion who demonstrate memory deficits should lead us to assess memory in all patients with cerebellar lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) data are commonly analyzed in terms of regional intensity, while covariant information is not taken into account. Here, we searched for network correlates of healthy cognitive function in resting state PET data. PET with [(18)F]-fluorodeoxyglucose and a test of verbal working memory (WM) were administered to 35 young healthy adults. Metabolic connectivity was modeled at a group level using sparse inverse covariance estimation. Among 13 WM-relevant Brodmann areas (BAs), 6 appeared to be robustly connected. Connectivity within this network was significantly stronger in subjects with above-median WM performance. In respect to regional intensity, i.e., metabolism, no difference between groups was found. The results encourage examination of covariant patterns in FDG-PET data from non-neurodegenerative populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SAMP8 is a strain of mice with accelerated senescence. These mice have recently been the focus of attention as they show several alterations that have also been described in Alzheimer"s disease (AD) patients. The number of dendritic spines, spine plasticity, and morphology are basic to memory formation. In AD, the density of dendritic spines is severely decreased. We studied memory alterations using the object recognition test. We measured levels of synaptophysin as a marker of neurotransmission and used Golgi staining to quantify and characterize the number and morphology of dendritic spines in SAMP8 mice and in SAMR1 as control animals. While there were no memory differences at 3 months of age, the memory of both 6- and 9-month-old SAMP8 mice was impaired in comparison with age-matched SAMR1 mice or young SAMP8 mice. In addition, synaptophysin levels were not altered in young SAMP8 animals, but SAMP8 aged 6 and 9 months had less synaptophysin than SAMR1 controls and also less than 3-month-old SAMP8 mice. Moreover, while spine density remained stable with age in SAMR1 mice, the number of spines started to decrease in SAMP8 animals at 6 months, only to get worse at 9 months. Our results show that from 6 months onwards SAMP8 mice show impaired memory. This age coincides with that at which the levels of synaptophysin and spine density decrease. Thus, we conclude that together with other studies that describe several alterations at similar ages, SAMP8 mice are a very suitable model for studying AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to examine developmental trends in response inhibition during childhood and to control for possible developmental influence of other basic cognitive processes (such as working memory and processing speed). In addition, we explored the relationships between response inhibition, working memory, and processing speed, as they are thought to be integral to cognitive control. Therefore, we assessed these three cognitive abilities in 159 children aged from 5 to 12. Results showed an improvement in response inhibition ability from 5 to 10 years of age. This improvement remained significant after controlling for the influence of working memory and processing speed. Furthermore, the developmental relationships showed an early differentiation between response inhibition, working memory, and processing speed. Thus, these processes were independent and need to be treated as such in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We all make decisions of varying levels of importance every day. Because making a decision implies that there are alternative choices to be considered, almost all decision involves some conflicts or dissatisfaction. Traditional economic models esteem that a person must weight the positive and negative outcomes of each option, and based on all these inferences, determines which option is the best for that particular situation. However, individuals rather act as irrational agents and tend to deviate from these rational choices. They somewhat evaluate the outcomes' subjective value, namely, when they face a risky choice leading to losses, people are inclined to have some preference for risk over certainty, while when facing a risky choice leading to gains, people often avoid to take risks and choose the most certain option. Yet, it is assumed that decision making is balanced between deliberative and emotional components. Distinct neural regions underpin these factors: the deliberative pathway that corresponds to executive functions, implies the activation of the prefrontal cortex, while the emotional pathway tends to activate the limbic system. These circuits appear to be altered in individuals with ADHD, and result, amongst others, in impaired decision making capacities. Their impulsive and inattentive behaviors are likely to be the cause of their irrational attitude towards risk taking. Still, a possible solution is to administrate these individuals a drug treatment, with the knowledge that it might have several side effects. However, an alternative treatment that relies on cognitive rehabilitation might be appropriate. This project was therefore aimed at investigate whether an intensive working memory training could have a spillover effect on decision making in adults with ADHD and in age-matched healthy controls. We designed a decision making task where the participants had to select an amount to gamble with the chance of 1/3 to win four times the chosen amount, while in the other cases they could loose their investment. Their performances were recorded using electroencephalography prior and after a one-month Dual N-Back training and the possible near and far transfer effects were investigated. Overall, we found that the performance during the gambling task was modulated by personality factors and by the importance of the symptoms at the pretest session. At posttest, we found that all individuals demonstrated an improvement on the Dual N-Back and on similar untrained dimensions. In addition, we discovered that not only the adults with ADHD showed a stable decrease of the symptomatology, as evaluated by the CAARS inventory, but this reduction was also detected in the control samples. In addition, Event-Related Potential (ERP) data are in favor of an change within prefrontal and parietal cortices. These results suggest that cognitive remediation can be effective in adults with ADHD, and in healthy controls. An important complement of this work would be the examination of the data in regard to the attentional networks, which could empower the fact that complex programs covering the remediation of several executive functions' dimensions is not required, a unique working memory training can be sufficient. -- Nous prenons tous chaque jour des décisions ayant des niveaux d'importance variables. Toutes les décisions ont une composante conflictuelle et d'insatisfaction, car prendre une décision implique qu'il y ait des choix alternatifs à considérer. Les modèles économiques traditionnels estiment qu'une personne doit peser les conséquences positives et négatives de chaque option et en se basant sur ces inférences, détermine quelle option est la meilleure dans une situation particulière. Cependant, les individus peuvent dévier de ces choix rationnels. Ils évaluent plutôt les valeur subjective des résultats, c'est-à-dire que lorsqu'ils sont face à un choix risqué pouvant les mener à des pertes, les gens ont tendance à avoir des préférences pour le risque à la place de la certitude, tandis que lorsqu'ils sont face à un choix risqué pouvant les conduire à un gain, ils évitent de prendre des risques et choisissent l'option la plus su^re. De nos jours, il est considéré que la prise de décision est balancée entre des composantes délibératives et émotionnelles. Ces facteurs sont sous-tendus par des régions neurales distinctes: le chemin délibératif, correspondant aux fonctions exécutives, implique l'activation du cortex préfrontal, tandis que le chemin émotionnel active le système limbique. Ces circuits semblent être dysfonctionnels chez les individus ayant un TDAH, et résulte, entre autres, en des capacités de prise de décision altérées. Leurs comportements impulsifs et inattentifs sont probablement la cause de ces attitudes irrationnelles face au risque. Cependant, une solution possible est de leur administrer un traitement médicamenteux, en prenant en compte les potentiels effets secondaires. Un traitement alternatif se reposant sur une réhabilitation cognitive pourrait être appropriée. Le but de ce projet est donc de déterminer si un entrainement intensif de la mémoire de travail peut avoir un effet sur la prise de décision chez des adultes ayant un TDAH et chez des contrôles sains du même âge. Nous avons conçu une tâche de prise de décision dans laquelle les participants devaient sélectionner un montant à jouer en ayant une chance sur trois de gagner quatre fois le montant choisi, alors que dans l'autre cas, ils pouvaient perdre leur investissement. Leurs performances ont été enregistrées en utilisant l'électroencéphalographie avant et après un entrainement d'un mois au Dual N-Back, et nous avons étudié les possibles effets de transfert. Dans l'ensemble, nous avons trouvé au pré-test que les performances au cours du jeu d'argent étaient modulées par les facteurs de personnalité, et par le degré des sympt^omes. Au post-test, nous avons non seulement trouvé que les adultes ayant un TDAH montraient une diminutions stable des symptômes, qui étaient évalués par le questionnaire du CAARS, mais que cette réduction était également perçue dans l'échantillon des contrôles. Les rsultats expérimentaux mesurés à l'aide de l'éléctroencéphalographie suggèrent un changement dans les cortex préfrontaux et pariétaux. Ces résultats suggèrent que la remédiation cognitive est efficace chez les adultes ayant un TDAH, mais produit aussi un effet chez les contrôles sains. Un complément important de ce travail pourrait examiner les données sur l'attention, qui pourraient renforcer l'idée qu'il n'est pas nécessaire d'utiliser des programmes complexes englobant la remédiation de plusieurs dimensions des fonctions exécutives, un simple entraiment de la mémoire de travail devrait suffire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.