910 resultados para Working Memory Training


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance on visual working memory tasks decreases as more items need to be remembered. Over the past decade, a debate has unfolded between proponents of slot models and slotless models of this phenomenon (Ma, Husain, Bays (Nature Neuroscience 17, 347-356, 2014). Zhang and Luck (Nature 453, (7192), 233-235, 2008) and Anderson, Vogel, and Awh (Attention, Perception, Psychophys 74, (5), 891-910, 2011) noticed that as more items need to be remembered, "memory noise" seems to first increase and then reach a "stable plateau." They argued that three summary statistics characterizing this plateau are consistent with slot models, but not with slotless models. Here, we assess the validity of their methods. We generated synthetic data both from a leading slot model and from a recent slotless model and quantified model evidence using log Bayes factors. We found that the summary statistics provided at most 0.15 % of the expected model evidence in the raw data. In a model recovery analysis, a total of more than a million trials were required to achieve 99 % correct recovery when models were compared on the basis of summary statistics, whereas fewer than 1,000 trials were sufficient when raw data were used. Therefore, at realistic numbers of trials, plateau-related summary statistics are highly unreliable for model comparison. Applying the same analyses to subject data from Anderson et al. (Attention, Perception, Psychophys 74, (5), 891-910, 2011), we found that the evidence in the summary statistics was at most 0.12 % of the evidence in the raw data and far too weak to warrant any conclusions. The evidence in the raw data, in fact, strongly favored the slotless model. These findings call into question claims about working memory that are based on summary statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural models have proposed how short-term memory (STM) storage in working memory and long-term memory (LTM) storage and recall are linked and interact, but are realized by different mechanisms that obey different laws. The authors' data can be understood in the light of these models, which suggest that the authors may have gone too far in obscuring the differences between these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children with sickle cell disease (SCD) have a high risk of neurocognitive impairment. No known research, however, has examined the impact of neurocognitive functioning on quality of life in this pediatric population. In addition, limited research has examined neurocognitive interventions for these children. In light of these gaps, two studies were undertaken to (a) examine the relationship between cognitive functioning and quality of life in a sample of children with SCD and (b) investigate the feasibility and preliminary efficacy of a computerized working memory training program in this population. Forty-five youth (ages 8-16) with SCD and a caregiver were recruited for the first study. Participants completed measures of cognitive ability, quality of life, and psychosocial functioning. Results indicated that cognitive ability significantly predicted child- and parent-reported quality of life among youth with SCD. In turn, a randomized-controlled trial of a computerized working memory program was undertaken. Eighteen youth with SCD and a caregiver enrolled in this study, and were randomized to a waitlist control or the working memory training condition. Data pertaining to cognitive functioning, psychosocial functioning, and disease characteristics were obtained from participants. The results of this study indicated a high degree of acceptance for this intervention but poor feasibility in practice. Factors related to feasibility were identified. Implications and future directions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spacing effect in list learning occurs because identical massed items suffer encoding deficits and because spaced items benefit from retrieval and increased time in working memory. Requiring the retrieval of identical items produced a spacing effect for recall and recognition, both for intentional and incidental learning. Not requiring retrieval produced spacing only for intentional learning because intentional learning encourages retrieval. Once-presented words provided baselines for these effects. Next, massed and spaced word pairs were judged for matches on their first three letters, forcing retrieval. The words were not identical, so there was no encoding deficit. Retrieval could and did cause spacing only for the first word of each pair; time in working memory, only for the second.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with schizophrenia display numerous cognitive deficits, including problems in working memory, time estimation, and absolute identification of stimuli. Research in these fields has traditionally been conducted independently. We examined these cognitive processes using tasks that are structurally similar and that yield rich error data. Relative to healthy control participants (n = 20), patients with schizophrenia (n = 20) were impaired on a duration identification task and a probed-recall memory task but not on a line-length identification task. These findings do not support the notion of a global impairment in absolute identification in schizophrenia. However, the authors suggest that some aspect of temporal information processing is indeed disturbed in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Despite evidence that gender may influence neurocognitive functioning, few studies have examined its effects in bipolar disorder (BD) a priori. The aim of this study was to examine how gender influences executive-type functions, which are potentially useful as endophenotypes for BD. Methods: The performance of 26 euthymic patients(12 males, 14 females) with DSM-IV BD (20 BD type I and six BD type II) was compared to that of 26 controls (12 males, 14 females) on tests of executive function. Controls were matched to patients on an individual basis for sex, age and premorbid IQ. Tests assessed spatial working memory (SWM), planning, attentional set-shifting and verbal fluency. Results: Overall, patients showed deficits in SWM strategy (p < 0.001) and made more SWM errors relative to controls (p < 0.001). These deficits were more apparent in male-only comparisons (both p < 0.001) than in female-only comparisons (both p < 0.05). When examined in isolation, male controls were significantly better at performing the SWM task than female controls (both p < 0.05). This pattern was not observed in the patient cohort: male patients had poorer strategy scores than female patients (p < 0.05), but made a similar number of SWM errors. Conclusions: These findings provide evidence that gender can influence the detection of SWM deficits in the euthymic phase of BD, as the sex-related disequilibrium in SWM identified in healthy controls was disrupted in BD. © 2008 The Authors Journal compilation © 2008 Blackwell Munksgaard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There can be wide variation in the level of oral/aural language ability that prelingually hearing-impaired children develop after cochlear implantation. Automatic perceptual processing mechanisms have come under increasing scrutiny in attempts to explain this variation. Using mismatch negativity methods, this study explored associations between auditory sensory memory mechanisms and verbal working memory function in children with cochlear implants and a group of hearing controls of similar age. Whilst clear relationships were observed in the hearing children between mismatch activation and working memory measures, this association appeared to be disrupted in the implant children. These findings would fit with the proposal that early auditory deprivation and a degraded auditory signal can cause changes in the processes underpinning the development of oral/aural language skills in prelingually hearing-impaired children with cochlear implants and thus alter their developmental trajectory