996 resultados para Water restriction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is a current major global, national and local issue. Historic drought and unprecedented restriction levels are now substantially influencing almost all Australia’s major cities. Residential design and adoption of appropriate technologies plays a key role in urban water efficiency. This project, the first of the CRC-CI Sustainable subdivisions program with a focus on water, explores the existing technologies available for sustainable suburbs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymerase chain reaction-based restriction fragment length polymorphism (RFLP) approach is used to examine Sarcocystis cruzi-like taxa from the atypical intermediate host, water buffalo, in Yunnan, People's Republic of China. The loci examined lie with

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feeding behaviour is an expression of an animal’s underlying nutritional strategy. The study of feeding decisions can hence delineate nutritional strategies. Studies of Drosophila melanogaster feeding behaviour have yielded conflicting accounts, and little is known about how nutrients affect feeding patterns in this important model species. Here, we conducted two experiments to characterize nutrient prioritization and regulation. In a choice experiment, we allowed female flies to self-regulate their intake of yeast, sucrose and water by supplying individual flies with three microcapillary tubes: one containing only yeast of varying concentrations, another with just sucrose of varying concentrations, and the last with just water. Flies tightly regulated yeast and sucrose to a constant ratio at the expense of excess water intake, indicating that flies prioritize macronutrient regulation over excess water consumption. To determine the relative importance of yeast and sucrose, in a no-choice experiment, we provided flies with two microcapillary tubes: the first with one of the 28 diets varying in yeast and sucrose content and the other with only water. Flies increased total water intake in relation to yeast consumption but not sucrose consumption. Additionally, flies increased diet intake as diet concentration decreased and as the ratio of sugar to yeast equalized. Using a geometric scaling approach, we found that the patterns of diet intake can be explained by flies prioritizing protein and carbohydrates equally and by the lack of substitutability between the nutrients. We conclude by illustrating how our results harmonize conflicting results in the literature once viewed in a two-dimensional diet landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water samples (24 untreated water, 12 treated water and 24 served water) used in different stages of the slaughter process were examined to identify a possible source of pathogenic mycobacteria. The isolates were identified based on microscopy, morphological and biochemical features, mycolic acid analysis and molecular method - PCR-restriction-enzyme analysis. Eighteen mycobacterial strains were isolated from 60 water samples: 11 from untreated water, 5 from treated water and 2 from served water. All mycobacteria isolated were identified as Mycobacterium gordonae and showed the following PRA genotypes: III (27.8%), IV (38.9%) and V (33.3%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to analyze the impact of food shortage on growth performance, by means of energetic reserves (proteins, glycogen and lipids) mobilization and hepatopancreas cells analysis in C. quadricarinatus juveniles maintained in groups, as well as the effect on culture water quality. Two experiments were performed, each of them with two feeding regimes during 45 days. The Control feeding regime, in which crayfish were fed daily (once a day) throughout the experimental period (DF), and the Cyclic feeding regime, in which juveniles were fed for 2 or 4 days (once a day) followed by 2 or 4 days of food deprivation (2F/2D and 4F/4D, respectively) in repeated cycles. Cyclic feeding influenced growth, biochemical composition from hepatopancreas and muscle, and water quality. Juveniles cyclically fed were unable to maintain a normal growth trajectory during 45 days. Apparent feed conversion ratio, apparent protein efficiency ratio, hepatosomatic index and relative pleon mass were similar in cyclic and daily fed animals and no structural damage was found in the hepatopancreas of juveniles subjected to cyclic feeding. The novelty of this study was the significant accumulation of proteins in pleonal muscle in both cyclic feeding regimes (approx. 18%) suggesting that the storage of this constitutive material during food shortage may be an adaptation for a compensatory growth when food becomes abundant again. The cyclic feeding regimes had a positive effect on water quality decreasing inorganic nitrogen concentration. This was due to the reduction in the amount of animal excretes and feces in the group that received approx. 50% less feed. Additionally, water pH was higher in cyclic feeding tanks, as a result of lower organic matter decomposition and consequent release of CO2. Accordingly, total ammonia in the water was significantly lower for the cyclic feeding regimes compared to their respective controls. This study suggests that the protocol of cyclic feeding could be applied at least 45 days in 1 g juveniles maintained in group conditions, without affecting the energetic reserves and hepatopancreas structure, emphasizing the high tolerance of this species to food restriction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the possibility of using hydric restriction as a method for evaluating vigor of soybean seeds. The soybean seeds, cultivar BRS 245RR, represented by four different seed lots, were characterized by germination and vigor. For the treatment of hydric restriction and temperature, the combination of substrate water potential and temperature were the following: deionized water (0.0 MPa); polyethylene glycol (PEG 6000) aqueous solution (-0.1, -0.3 and -0.5 MPa); and four temperatures (20 ºC, 25 ºC, 30 ºC, and 35 ºC), respectively. A completely randomized experimental design was used, with four replications per treatment, and the ANOVA was performed individually for each combination of temperature and water potential of substrate. According to results obtained, the test of hydric restriction has the same efficiency of the accelerated aging test in estimating vigor of soybean seeds, cv. BRS 245RR, when water potentials of -0.1 MPa or -0.3 MPa at a temperature of 25 ºC, or -0.3 MPa at a temperature of 30 ºC are used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das &amp;amp;quot;korrekte&amp;amp;quot; asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a simplified model of choked flow in pipes for CO2-water solutions as an important step in the modelling of a whole hydraulic system with the intention of eliminating the carbon dioxide generated in air-independent submarine propulsion. The model is based on an approximate fitting of the homogeneous isentropic solution upstream of a valve (or any other area restriction), for given fluid conditions at the entrance. The relative maximum choking back-pressure is computed as a function of area restriction ratio. Although the procedure is generic for gas solutions, numeric values for the non-dimensional parameters in the analysis are developed only for choking in the case of carbon dioxide solutions up to the pure-water limit.