941 resultados para Visual Speaker Recognition, Visual Speech Recognition, Cascading Appearance-Based Features
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
In this paper, the topology of cortical visuotopic maps in adult primates is reviewed, with emphasis on recent studies. The observed visuotopic organisation can be summarised with reference to two basic rules. First, adjacent radial columns in the cortex represent partially overlapping regions of the visual field, irrespective of whether these columns are part of the same or different cortical areas. This primary rule is seldom, if ever, violated. Second, adjacent regions of the visual field tend to be represented in adjacent radial columns of a same area. This rule is not as rigid as the first, as many cortical areas form discontinuous, second-order representations of the visual field. A developmental model based on these physiological observations, and on comparative studies of cortical organisation, is then proposed, in order to explain how a combination of molecular specification steps and activity-driven processes can generate the variety of visuotopic organisations observed in adult cortex.
Resumo:
In the present review, we describe a systematic study of the sulfated polysaccharides from marine invertebrates, which led to the discovery of a carbohydrate-based mechanism of sperm-egg recognition during sea urchin fertilization. We have described unique polymers present in these organisms, especially sulfated fucose-rich compounds found in the egg jelly coat of sea urchins. The polysaccharides have simple, linear structures consisting of repeating units of oligosaccharides. They differ among the various species of sea urchins in specific patterns of sulfation and/or position of the glycosidic linkage within their repeating units. These polysaccharides show species specificity in inducing the acrosome reaction in sea urchin sperm, providing a clear-cut example of a signal transduction event regulated by sulfated polysaccharides. This distinct carbohydrate-mediated mechanism of sperm-egg recognition coexists with the bindin-protein system. Possibly, the genes involved in the biosynthesis of these sulfated fucans did not evolve in concordance with evolutionary distance but underwent a dramatic change near the tip of the Strongylocentrotid tree. Overall, we established a direct causal link between the molecular structure of a sulfated polysaccharide and a cellular physiological event - the induction of the sperm acrosome reaction in sea urchins. Small structural changes modulate an entire system of sperm-egg recognition and species-specific fertilization in sea urchins. We demonstrated that sulfated polysaccharides - in addition to their known function in cell proliferation, development, coagulation, and viral infection - mediate fertilization, and respond to evolutionary mechanisms that lead to species diversity.
Resumo:
We describe a system that learns from examples to recognize people in images taken indoors. Images of people are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector Machine classifiers (SVMs). Different types of multiclass strategies based on SVMs are explored and compared to k-Nearest Neighbors classifiers (kNNs). The system works in real time and shows high performance rates for people recognition throughout one day.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
In this paper we present a new wavelet-based algorithm for low-cost computation of the cepstrum. It can be used for real time precise pitch determination in automatic speech and speaker recognition systems. Many wavelet families are examined to determine the one that works best. The results confirm the efficacy and accuracy of the proposed technique for pitch extraction. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.
Resumo:
Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.
Resumo:
Para compor um sistema de Reconhecimento Automático de Voz, pode ser utilizada uma tarefa chamada Classificação Fonética, onde a partir de uma amostra de voz decide-se qual fonema foi emitido por um interlocutor. Para facilitar a classificação e realçar as características mais marcantes dos fonemas, normalmente, as amostras de voz são pré- processadas através de um fronl-en'L Um fron:-end, geralmente, extrai um conjunto de parâmetros para cada amostra de voz. Após este processamento, estes parâmetros são insendos em um algoritmo classificador que (já devidamente treinado) procurará decidir qual o fonema emitido. Existe uma tendência de que quanto maior a quantidade de parâmetros utilizados no sistema, melhor será a taxa de acertos na classificação. A contrapartida para esta tendência é o maior custo computacional envolvido. A técnica de Seleção de Parâmetros tem como função mostrar quais os parâmetros mais relevantes (ou mais utilizados) em uma tarefa de classificação, possibilitando, assim, descobrir quais os parâmetros redundantes, que trazem pouca (ou nenhuma) contribuição à tarefa de classificação. A proposta deste trabalho é aplicar o classificador SVM à classificação fonética, utilizando a base de dados TIMIT, e descobrir os parâmetros mais relevantes na classificação, aplicando a técnica Boosting de Seleção de Parâmetros.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.
Resumo:
WE INVESTIGATED HOW WELL STRUCTURAL FEATURES such as note density or the relative number of changes in the melodic contour could predict success in implicit and explicit memory for unfamiliar melodies. We also analyzed which features are more likely to elicit increasingly confident judgments of "old" in a recognition memory task. An automated analysis program computed structural aspects of melodies, both independent of any context, and also with reference to the other melodies in the testset and the parent corpus of pop music. A few features predicted success in both memory tasks, which points to a shared memory component. However, motivic complexity compared to a large corpus of pop music had different effects on explicit and implicit memory. We also found that just a few features are associated with different rates of "old" judgments, whether the items were old or new. Rarer motives relative to the testset predicted hits and rarer motives relative to the corpus predicted false alarms. This data-driven analysis provides further support for both shared and separable mechanisms in implicit and explicit memory retrieval, as well as the role of distinctiveness in true and false judgments of familiarity.