871 resultados para VEGETABLE UPTAKE
Resumo:
Closantel is an anthe lmintic which associates with plasma albumin and is useful for the control of sheep parasites, such as Haemonchus contortus, that ingest blood. However, the utility of closantel for parasite control has been threatened by the emergence of resistance. The mechanisms of resistance are unknown. A closantel-resistant and a closantel-susceptible isolate of H. contortus were compared with respect to the distribution and metabolism of closantel. Neither strain appeared to metabolise closantel in vitro or in vivo. Following treatment of infected sheep with radioactively labelled closantel, isotope levels in closantel-resistant adult H. contortus were significantly lower than in susceptible worms. This reduced accumulation of drug could contribute to closantel resistance by mechanisms such as reduced feeding, failure to dissociate the drug-albumin complex in the gut or increased efflux of closantel from resistant worms. (C) 1997 Australian Society for Parasitology.
Resumo:
The regulation of putrescine transport in difluoromethylornithine-treated B16 melanoma cells by extracellular Ca2+ has been investigated. It was found that physiological concentrations of Ca2+ were essential for optimum uptake of putrescine and spermidine. Mg2+, albeit at higher concentrations, also could potentiate polyamine transport. The maximum rate of putrescine uptake increased from 1698 +/-: 67 pmol/min/mg DNA in the absence of Ca2+ to 3100 +/- 98 pmol/min/mg DNA in the presence of 0.5 mM Ca2+. There was no change in K-m. While Ca2+ enhanced transport of both putrescine and spermidine it did not affect the uptake of deoxyglucose, thymidine or leucine. Putrescine did not alter Ca2+ fluxes suggesting that the two cations do not share a common transport system. The effects of Ca2+ on putrescine uptake appeared to be mediated extracellularly firstly because Ca2+ did not potentiate putrescine uptake in the presence of A23187 and secondly, because the effects of Ca2+ were completely inhibited by the lanthanide Tb3+, which binds to calcium-dependent proteins and does not readily cross biological membranes. Ca2+ did not affect putrescine transport in the absence of extracellular Na+. Moreover, the rate of putrescine uptake in the absence of Ca2+ was similar to that in the absence of extracellular Na+. The results from this study indicate that polyamine transport is stimulated by extracellular Ca2+ and suggest that Ca2+ is required for activity of the Na+-dependent transporter only. This transporter appears to possess a regulatory binding site for divalent cations. (C) 1997 Elsevier Science Ltd.
Resumo:
Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were >= 10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was >= 40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Purpose In animal experiments paclitaxel oleate associated with a cholesterol-rich nanoemulsion concentrated in the neoplastic tissues and showed reduced toxicity and increased antitumor activity compared with paclitaxel-Cremophor EL. Here, a clinical study was performed in breast cancer patients to evaluate the tumoral uptake, pharmacokinetics and toxicity of paclitaxel associated to nanoemulsions. Methods Twenty-four hours before mastectomy [(3)H]paclitaxel oleate associated with [(14)C]-cholesteryl oleatenanoemulsion or [(3)H]- paclitaxel in Cremophor EL were injected into five patients for collection of blood samples and fragments of tumor and normal breast tissue. A pilot clinical study of paclitaxel-nanoemulsion administered at 3-week intervals was performed in four breast cancer patients with refractory advanced disease at 175 and 220 mg/m(2) dose levels. Results T(1/2) of paclitaxel oleate associated to the nanoemulsion was greater than that of paclitaxel (t(1/2) = 15.4 +/- 4.7 and 3.5 +/- 0.80 h). Uptake of the [(14)C]-cholesteryl ester nanoemulsion and [(3)H]- paclitaxel oleate by breast malignant tissue was threefold greater than the normal breast tissue and toxicity was minimal at the two dose levels. Conclusions Our results suggest that the paclitaxel-nanoemulsion preparation can be advantageous for use in the treatment of breast cancer because the pharmacokinetic parameters are improved, the drug is concentrated in the neoplastic tissue and the toxicity of paclitaxel is reduced.
Resumo:
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/- 0.60) and 12.5 (+/- 0.26) mu g/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 mu g/mL, respectively. The MBC of UA-LIPO was twice as low (16 mu g/mL) as that of UA (32 mu g/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Resumo:
Sperm-mediated gene transfer (SMGT) is a fast and low-cost method used to produce transgenic animals. The objective of this study was to evaluate the effects of the concentration of exogenous DNA and the duration of incubation on DNA uptake by bovine spermatozoa and subsequently the integrity of sperm DNA and sperm apoptosis. Spermatozoa (5 X 10(6) cells/mL) were incubated with 100, 300, or 500 ng of exogenous DNA (pEYFP-Nuc plasmid) for 60 or 120 min at 39 degrees C. The amount of exogenous DNA associated with spermatozoa was quantified by real-time PCR, and the percentages of DNA fragmentation in spermatozoa were evaluated using SCSA and a TUNEL assay, coupled with flow cytometry. Uptake of exogenous DNA increased significantly as incubation increased from 60 to 120 min (0.0091 and 0.028 ng, respectively), but only when the highest exogenous DNA concentration (500 ng) was used (P < 0.05). Based on SCSA and TUNEL assays, there was no effect of exogenous DNA uptake or incubation period on sperm DNA integrity. In conclusion, exogenous DNA uptake by bovine spermatozoa was increased with the highest exogenous DNA concentration and longest incubation period, but fragmentation of endogenous DNA was apparently not induced. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
It has been suggested that fluoride retention in plaque is limited by available binding sites. We determined the effects of fluoridated or placebo dentifrices on plaque and salivary fluoride concentrations [F]s in communities with different water fluoride concentrations (0.04, 0.85, 3.5 ppm). After one week of dentifrice use, samples were collected 1.0 and 12 hrs after the last use of dentifrices. After the use of fluoridated dentifrice, plaque fluoride concentrations were higher at both times, except at 12 hrs in the 3.5-ppm community. Plaque concentrations at 1.0 hr after the use of fluoridated dentifrice increased almost constantly (6.5 mmol/kg), but then decreased approximately 50% at 12 hrs in each community. Unlike previous studies, the present findings suggest that the use of fluoridated dentifrice is likely to increase plaque fluoride concentrations significantly for up to 12 hrs in areas where the water contains fluoride close to 1.0 ppm. As previously reported, plaque fluoride concentrations were directly related to calcium concentrations.
Resumo:
Strong evidence obtained from in vivo and ex-vivo studies suggests the existence of interaction between dopaminergic and nitrergic systems. Some of the observations suggest a possible implication of nitric oxide (NO) in dopamine (DA) uptake mechanism. The present work investigated the interaction between both systems by examining the effect of an NO donor, sodium nitroprusside (SNP), associated with the indirect DA agonist, amphetamine (AMPH) on tritiated DA uptake in cultures of embryonic mesencephalic neurons. Consistent with the literature, both AMPH (1, 3 and 10 mu M) and SNP (300 mu M and 1 mM) inhibited DA uptake in a dose-dependent manner. In addition, the inhibition of DA uptake by AMPH (1 and 3 mu M) was significantly increased by the previous addition of SNP (300 mu M). The implication of NO in this interaction was supported by the fact that the free radical scavenger N-acetyl-L-Cysteine (500 mu M) significantly increased DA uptake and completely abolished the effect of SNP, leaving unaffected that from AMPH on DA uptake. Further, double-labeling immunohistochemistry showed the presence of tyrosine hydroxylase-(TH, marker for dopaminergic neurons) and neuronal NO synthase- (nNOS, marker for NO containing neurons) expressing neurons in mesencephalic cultures. Some dopaminergic neurons also express nNOS giving further support for a pre-synaptic interaction between both systems. This is the first work demonstrating in mesencephalic cultured neurons a combined effect of an NO donor and an indirect DA agonist on specific DA uptake. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.