919 resultados para VACUUM POLARIZATION
Resumo:
The CIGRE WGs A3.20 and A3.24 identify the requirements of simulation tools to predict various stresses during the development and operational phases of medium voltage vacuum circuit breaker (VCB) testing. This paper reviews the modelling methodology [13], VCB models and tools to identify future research. It will include the application of the VCB model for the impending failure of a VCB using electro-magnetic-transient-program with diagnostic and prognostic algorithm development. The methodology developed for a VCB degradation model is to modify the dielectric equation to cover a restriking period of more than 1 millimetre.
Resumo:
Disposal of mud and ash, particularly in wet weather conditions, is a significant expense for mills. This paper reports on one part of a process to pelletise mud and ash, aimed at making mud and ash more attractive to growers across entire mill districts. The full process is described in a separate paper. The part described in this paper involves re-constituting mud cake from the filter station at Tully Mill and processing it in a decanter centrifuge. The material produced by re-constituting and centrifuging is drier and made up of separate particles. The material needs to mix easily with boiler ash, and the mixture needs to be fed easily into a flue gas drier to be dried to low moisture. The results achieved with the particular characteristics of Tully Mill rotary vacuum filter cake are presented. It was found that an internal rotor with a 20º beach was not adequate to process re-constituted rotary vacuum filter mud. A rotor with a 10º beach worked much more successfully. A total of four tonnes of centrifuged mud with a moisture content ranging from 60% to 65% was produced. It was found that the torque, flocculant rate and dose rate had a statistically significant effect on the moisture content. Feed rate did not have a noticeable impact on the moisture content by itself but torque had a much larger impact on the moisture content at the low feed rate than at the high feed rate. These results indicated that the moisture content of the mud can most likely be reduced with low feed rate, low flocculant rate, high dose rate and high torque. One issue that is believed to affect the operation of a decanter centrifuge was the large quantity of long bagasse fibres in the rotary vacuum filter mud. It is likely that the long fibres limited the throughput of the centrifuge and the moisture achieved.
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
We present experimental and theoretical results of the intensity dependence of residual amplitude modulation (RAM) production in electro-optic phase modulators. By utilizing the anisotropy of the medium, we show that RAM has a photorefractive origin.
Resumo:
Vacuum circuit breaker (VCB) overvoltage failure and its catastrophic failures during shunt reactor switching have been analyzed through computer simulations for multiple reignitions with a statistical VCB model found in the literature. However, a systematic review (SR) that is related to the multiple reignitions with a statistical VCB model does not yet exist. Therefore, this paper aims to analyze and explore the multiple reignitions with a statistical VCB model. It examines the salient points, research gaps and limitations of the multiple reignition phenomenon to assist with future investigations following the SR search. Based on the SR results, seven issues and two approaches to enhance the current statistical VCB model are identified. These results will be useful as an input to improve the computer modeling accuracy as well as the development of a reignition switch model with point-on-wave controlled switching for condition monitoring
Resumo:
Polymeric graphitic carbon nitride materials have attracted increasing attention in recent years owning to their potential applications in energy conversion, environment protection, and so on. Here, from first-principles calculations, we report the electronic structure modification of graphitic carbon nitride (g-C3N4) in response to carbon doping. We showed that each dopant atom can induce a local magnetic moment of 1.0 μB in non-magnetic g-C3N4. At the doping concentration of 1/14, the local magnetic moments of the most stable doping configuration which has the dopant atom at the center of heptazine unit prefer to align in a parallel way leading to long-range ferromagnetic (FM) ordering. When the joint N atom is replaced by C atom, the system favors an antiferromagnetic (AFM) ordering at unstrained state, but can be tuned to ferromagnetism (FM) by applying biaxial tensile strain. More interestingly, the FM state of the strained system is half-metallic with abundant states at the Fermi level in one spin channel and a band gap of 1.82 eV in another spin channel. The Curie temperature (Tc) was also evaluated using a mean-field theory and Monte Carlo simulations within the Ising model. Such tunable electron spin-polarization and ferromagnetism are quite promising for the applications of graphitic carbon nitride in spintronics.
Resumo:
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run and their airborne emissions sampled with closed-face cassettes. Dust samples were also 35 collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus and total Clostridium cluster 1 were quantified with specific qPCR protocols and emission rates were calculated. Clostridium botulinum, as well as antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gel electrophoresis (DGGE), image analysis and band sequencing. We demonstrated that emission of bacteria and moulds (Pen/Asp) can reach values as high as 1E05/min and that those emissions are not related to each other. The bag dust bacterial and mould content was also consistently across the vacuums we assessed, reaching up to 1E07 bacteria or moulds equivalent/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum were detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of moulds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.
Resumo:
Collagen crosslinking (CXL) has shown promising results in the prevention of the progression of keratoconus and corneal ectasia. However, techniques for in vivo and in situ assessment of the treatment are limited. In this study, ex vivo porcine eyes were treated with a chemical CXL agent (glutaraldehyde), during which polarization sensitive optical coherence tomography (PS-OCT) recordings were acquired simultaneously to assess the sensitivity of the technique to assess changes in the cornea. The results obtained in this study suggest that PS-OCT may be a suitable technique to measure CXL changes in situ and to assess the local changes in the treated region of the cornea.
Resumo:
Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a "response" to burn injury.
Resumo:
Polarisation diversity is a technique to improve the quality of mobile communications, but its reliability is suboptimal because it depends on the mobile channel and the antenna orientations at both ends of the mobile link. A method to optimise the reliability is established by minimising the dependency on antenna orientations. While the mobile base station can have fixed antenna orientation, the mobile terminal is typically a handheld device with random orientations. This means orientation invariance needs to be established at the receiver in the downlink, and at the transmitter in the uplink. This research presents separate solutions for both cases, and is based on the transmission of an elliptically polarised signal synthesised from the channel statistics. Complete receiver orientation invariance is achieved in the downlink. Effects of the transmitter orientation are minimised in the uplink.
Resumo:
Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.
Resumo:
This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.
Resumo:
The influence of ion current density on the thickness of coatings deposited in a vacuum arc setup has been investigated to optimize the coating porosity. A planar probe was used to measure the ion current density distribution across plasma flux. A current density from 20 to 50 A/m2 was obtained, depending on the probe position relative to the substrate center. TiN coatings were deposited onto the cutting inserts placed at different locations on the substrate, and SEM was used to characterize the surfaces of the coatings. It was found that lowdensity coatings were formed at the decreased ion current density. A quantitative dependence of the coating thickness on the ion current density in the range of 20-50 A/m2 were obtained for the films deposited at substrate bias of 200 V and nitrogen pressure 0.1 Pa, and the coating porosity was calculated. The coated cutting inserts were tested by lathe machining of the martensitic stainless steel AISI 431. The results may be useful for controlling ion flux distribution over large industrial-scale substrates.