973 resultados para United States. Great Lakes Basin Commission
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Added t.-p.: Moore, J. B. International adjudications, ancient and modern ... Modern series. vol. I-II.
Resumo:
Added t.-p.: Moore, J. B. International adjudications, ancient and modern ... Modern series. vol. III.
Resumo:
Added t.-p.: Moore, J. B. International adjudications, ancient and modern ... Modern series. vol. VI.
Resumo:
Shipping list no.: 93-0332-P.
Resumo:
Mode of access: Internet.
Resumo:
Opinions concerning the 7th article of the treaty.
Resumo:
Accompanied by "Appendix" (13v. in 11. illus. (part col.) maps (part col.) 27cm.) Published: Atlanta, 1963.
Resumo:
"Completed as a cooperative effort between the U.S. Department of Commerce, Environmental Science Services Administration, and the U.S. Department of Agriculture, Economic Research Service."
Resumo:
Between 1994 and 1997, 258 tissue and 178 sediment samples were analyzed for chlorpyrifos throughout the coastal United States and the Great Lakes. Subsequently, 95 of the 1997 tissue samples were reanalyzed for endosulfan. Tissue chlorpyrifos concentrations, which exceeded the 90th percentile, were found in coastal regions known to have high agricultural use rates but also strongly correlated with sites near high population. The highest concentrations of endosulfans in contrast, were generally limited to agricultural regions of the country. Detections of chlorpyrifos at several Alaskan sites suggest an atmospheric transport mechanism. Many Great Lakes sites had chlorpyrifos tissue concentrations above the 90th percentile which decreased with increasing distance from the Corn Belt region (Iowa, Indiana, Illinois, and Wisconsin) where most agriculturally applied chlorpyrifos is used. Correlation analysis suggests that fluvial discharge is the primary transport pathway on the Atlantic and Gulf of Mexico coasts for chlorpyrifos but not necessarily for endosulfans. (PDF contains 28 pages)
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
The biography of Charles Bradford Hudson that follows this preface had its seeds about 1965 when I (VGS) was casually examining the extensive files of original illustrations of fishes stored in the Division of Fishes, National Museum of Natural History, Smithsonian Institution. I happened upon the unpublished illustration of a rainbow trout by Hudson and was greatly impressed with its quality. The thought occurred to me then that the artist must have gone on to do more than just illustrate fishes. During the next 20 years I occasionally pawed through those files, which contained the work of numerous artists, who had worked from 1838 to the present. In 1985, I happened to discuss the files with my supervisor, who urged me to produce a museum exhibit of original fish illustrations. This I did, selecting 200 of the illustrations representing 21 artists, including, of course, Hudson. As part of the text for the exhibit, Drawn from the Sea, Art in the Service of Ichthyology, I prepared short biographies of each of the artists. The exhibit, with an available poster, was shown in the Museum for six months, and a reduced version was exhibited in U.S. and Canadian museums during the next 3 years.