963 resultados para Uniformity.
Resumo:
AIMS/HYPOTHESIS:
The aim of the study was to describe 20-year incidence trends for childhood type 1 diabetes in 23 EURODIAB centres and compare rates of increase in the first (1989-1998) and second (1999-2008) halves of the period.
METHODS:
All registers operate in geographically defined regions and are based on a clinical diagnosis. Completeness of registration is assessed by capture-recapture methodology. Twenty-three centres in 19 countries registered 49,969 new cases of type 1 diabetes in individuals diagnosed before their 15th birthday during the period studied.
RESULTS:
Ascertainment exceeded 90% in most registers. During the 20-year period, all but one register showed statistically significant changes in incidence, with rates universally increasing. When estimated separately for the first and second halves of the period, the median rates of increase were similar: 3.4% per annum and 3.3% per annum, respectively. However, rates of increase differed significantly between the first half and the second half for nine of the 21 registers with adequate coverage of both periods; five registers showed significantly higher rates of increase in the first half, and four significantly higher rates in the second half.
CONCLUSIONS/INTERPRETATION:
The incidence rate of childhood type 1 diabetes continues to rise across Europe by an average of approximately 3-4% per annum, but the increase is not necessarily uniform, showing periods of less rapid and more rapid increase in incidence in some registers. This pattern of change suggests that important risk exposures differ over time in different European countries. Further time trend analysis and comparison of the patterns in defined regions is warranted.
Resumo:
High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.
Resumo:
PURPOSE. To investigate the methods used in contemporary ophthalmic literature to designate visual acuity (VA). METHODS. Papers in all 2005 editions of five ophthalmic journals were considered. Papers were included if (1) VA, vision, or visual function was mentioned in the abstract and (2) if the study involved age-related macular degeneration, cataract, or refractive surgery. If a paper was selected on the basis of its abstract, the full text of the paper was examined for information on the method of refractive correction during VA testing, type of chart used to measure VA, specifics concerning chart features, testing protocols, and data analysis and means of expressing VA in results. RESULTS. One hundred twenty-eight papers were included. The most common type of charts used were described as logMAR-based. Although most (89.8%) of the studies reported on the method of refractive correction during VA testing, only 58.6% gave the chart design, and less than 12% gave any information whatsoever on chart features or measurement procedures used. CONCLUSIONS. The methods used and the approach to analysis were rarely described in sufficient detail to allow others to replicate the study being reported. Sufficient detail should be given on VA measurement to enable others to duplicate the research. The authors suggest that charts adhering to Bailey-Lovie design principles always be used to measure vision in prospective studies and their use encouraged in clinical settings. The distinction between the terms logMAR, an acuity notation, and Bailey-Lovie or ETDRS as chart types should be adhered to more strictly. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
This paper considers the tension that can exist in the aims of religious education between the desire to encourage open-minded, critical thinking through exposure to diverse traditions, ideas and cultures and the encouragement, overt or otherwise, into uniformity whereby learners take on the values of a particular tradition, culture or ideology (say of a religion, family or school). The particular situation of teaching religious education to post-primary school pupils in Northern Ireland is considered, and evidence cited to suggest that the Northern Ireland Core Syllabus in Religious Education has tried to impose a particular non-denominational Christian uniformity on pupils and teachers through its use of religious language. This has contributed to a culture of 'avoidance' in relation to the teaching of broad Christian diversity. The article concludes that there is a need for an ongoing and meaningful dialogue to discover what kind of balance between uniformity and diversity is best in teaching religious education in Northern Ireland, and notes that this also requires the reassessment of fundamental issues such as the aims of education and the relationship between secular and religious values in publicly funded schools. © 2004 Christian Education.
Resumo:
"Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Docteur en Droit (LL.D.) et à la Faculté de Droit et de Sciences Politiques de l'Université de Nantes en vue de l'obtention du grade de Docteur"
Resumo:
A new method for the fabrication of high uniformity monolithic 1 x 4 single mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring.
Resumo:
A new method for the fabrication of high uniformity monolithic 1 x4 single-mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring
Resumo:
In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the its design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient (VC) is not equal to production variation coefficient in the operational unit; d) the difference between the discharge variation coefficient and the productivity variation coefficient depends on the water depth applied. This study aimed to evaluate the relationship between EU used in the irrigation system design and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index proposed by Barragan. The emitter variation coefficient was always lower than the productivity variation coefficient. To obtain uniformity of production, it is necessary to consider the irrigation system uniformity and mainly the water depth to be applied.
Resumo:
Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any robust quality control program is the determination of significant deviations from standard or baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation (1). This thesis describes the development and testing of new methods for monitoring detector uniformity. These techniques provide more quantitative, sensitive, and specific feedback to the reviewer so that he or she may be better equipped to identify performance degradation prior to its manifestation in clinical images. The methods exploit the temporal nature of detector degradation and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition. These techniques were tested on synthetic phantom data using different degradation functions, as well as on experimentally acquired time series floods with induced, progressively worsening defects present within the field-of-view. The sensitivity of conventional, global figures-of-merit for detecting changes in uniformity was evaluated and compared to these new image-space techniques. The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity prior to any single flood image’s having a NEMA uniformity value in excess of 5%. The sensitivity of these image-space algorithms was found to depend on the size and magnitude of the non-uniformities, as well as on the nature of the cause of the non-uniform region. A trend analysis of the conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity. The image-space algorithms are computationally efficient. Therefore, the image-space algorithms should be used concomitantly with the trending of the global figures-of-merit in order to provide the reviewer with a richer assessment of gamma camera detector uniformity characteristics.
Resumo:
Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB.
Resumo:
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser?capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.