994 resultados para Ultraviolet spectroscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The HeI photoelectron spectrum of the hydrogen bonded hetero-dimer H2Scdots, three dots, centeredHCl shows two vertical ionization energies at 10.91 and 12.16 eV. Ab initio MO calculations reveal that these features are due to the sulphur and chlorine lone pair ionizations respectively. Results show that while the ground ionic state is repulsive the first excited ionic state is strongly bound. The photoelectron spectrum of the diethyl sulphidecdots, three dots, centeredHCl complex is similar to that of H2Scdots, three dots, centeredHCl.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clinical trials have reported statistically significant and clinically relevant effects of homeopathic preparations. We applied ultraviolet (UV) spectroscopy to investigate the physical properties of homeopathic preparations and to contribute to an understanding of the not-yet-identified mode of action. In previous investigations, homeopathic preparations had significantly lower UV light transmissions than controls. The aim of this study was to explore the possible effects of external factors (UV light and temperature) on the homeopathic preparations. Homeopathic centesimal (c) dilutions, 1c to 30c, of copper sulfate (CuSO(4)), decimal dilutions of sulfur (S(8)), 1x to 30x, and controls (succussed potentization medium) were prepared, randomized, and blinded. UV transmission was measured at six different time points after preparation (from 4 to 256 days). In addition, one series of samples was exposed to UV light of a sterilization lamp for 12 h, one was incubated at 37 degrees Celsius for 24 h, and one was heated to 90 degrees Celsius for 15 min. UV light transmission values from 190 or 220 nm to 340 nm were measured several times and averaged. After each exposure, UV transmission of the homeopathic preparations of CuSO(4) was significantly reduced compared to the controls, particularly after heating to 37 degrees Celsius. Overall, the nonexposed CuSO(4) preparations did not show significantly lower UV transmission compared to controls; however, the pooled subgroup of measurements at days 26, 33, and 110 yielded significant differences. UV light transmission for S(8) preparations did not show any differences compared to controls. Our conclusion is that exposure to external factors, incubation at 37 degrees Celsius in particular, increases the difference in light transmission of homeopathic CuSO(4) preparations compared to controls.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: High dilutions of various starting materials, e.g. copper sulfate, Hypericum perforatum and sulfur, showed significant differences from controls and amongst different dilution levels in ultraviolet light (UV) transmission [1,2]. Exposure of high dilutions to external physical factors such as UV light or elevated temperature (37°C) also yielded significantly different UV transmissions compared to unexposed dilutions [2,3]. In a study with highland frogs it was shown that animals incubated with thyroxine 30c but not with thyroxine 30c exposed to electromagnetic fields (EMFs) of a microwave oven or mobile phone metamorphosed more slowly than control animals [4]. Aims: The aim was to test whether the EMF of a mobile phone influences the UV absorbance of dilutions of quartz and Atropa belladonna (AB). Methodology: Commercially available dilutions of 6x, 12x, 15x, 30x in H2O and 19% ethanol of quartz (SiO2) and of 4x, 6x, 12x, 15x, 30x in H2O and 19% ethanol of AB were used in the experiments (Weleda AG, Arlesheim, Switzerland). Four samples of each dilution were exposed to the EMF of a mobile phone (Philips, Savvy Dual Band) at 900 MHz with an output of 2 W for 3 h, while control samples (4 of each dilution) were kept in a separate room. Absorbance of the samples in the UV range (from 190 to 340 nm) was measured in a randomized order with a Shimadzu UV-1800 spectrophotometer equipped with an auto sampler. In total 5 separate measurement days will be carried out for quartz and for AB dilutions. The average absorbance from 200 to 340 nm and from 200 to 240 nm was compared among dilution levels using a Kruskal-Wallis test and between exposed and unexposed samples using a Mann-Whitney-U test. Results: Preliminary results after 2 measurement days indicated that for quartz the absorbance of the various dilution levels was different from each other (except 12x and 15x), and that samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples. Preliminary results after one measurement day indicated that for AB the absorbance of the various dilution levels was different from each other. The samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples (except 4x in the range from 200 – 240 nm). Conclusions: These results suggest that exposure of high dilutions of quartz and AB to a mobile phone EMF as used here does not alter UV absorbance of these dilutions. The final results will show whether this holds true.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Homeopathic globules are commonly used in clinical practice, while research focuses on liquid potencies. Sequential dilution and succussion in their production process has been proposed to change the physico-chemical properties of the solvent(s). It has been reported that aqueous potencies of various starting materials showed significant differences in ultraviolet light transmission compared to controls and between different dilution levels. The aim of the present study was to repeat and expand these experiments to homeopathic globules. Methods Globules were specially produced for this study by Spagyros AG (Gümligen, Switzerland) from 6 starting materials (Aconitum napellus, Atropa belladonna, phosphorus, sulfur, Apis mellifica, quartz) and for 6 dilution levels (6x, 12x, 30c, 200c, 200CF (centesimal discontinuous fluxion), 10,000CF). Native globules and globules impregnated with solvents were used as controls. Globules were dissolved in ultrapure water, and absorbance in the ultraviolet range was measured. The average absorbance from 200 to 340 nm was calculated and corrected for differences between measurement days and instrumental drift. Results Statistically significant differences were found for A. napellus, sulfur, and A. mellifica when normalized average absorbance of the various dilution levels from the same starting material (including control and solvent control globules) was compared. Additionally, absorbance within dilution levels was compared among the various starting materials. Statistically significant differences were found among 30c, 200c and 200CF dilutions. Conclusion This study has expanded previous findings from aqueous potencies to globules and may indicate that characteristics of aqueous high dilutions may be preserved and detectable in dissolved globules.