996 resultados para Ultrasonic Flow Meter


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study site was located in the Disko Bay off Qeqertarsuaq, western Greenland. Due to land-connected sea ice coverage during winter, 2 sampling sites were combined. At the first site in winter (21 February to 23 March 2008), sampling was conducted through a hole in the ice at ca. 65 to 160 m depth approximately 0.5 nautical mile (n mile) south of Qeqertarsuaq (69° 14' N, 53° 29' W). In spring and summer (9 April to 18 July), sampling was done at a monitoring station 1 n mile south from Qeqertarsuaq (69° 14' N, 53° 23' W) at 300 m depth. Sampling was carried out between 10:00 and 17:00 h. During sampling from the ice, mesozooplankton was collected using a modified WP-2 net (45 µm) equipped with a closing mechanism (Hydrobios). Samples were collected in 3 depth strata (0-50, 50-100, and 100-150 m). During ship-based sampling, mesozooplankton was collected with a multinet (50 µm) equipped with a flow meter (Multinet, Hydrobios type midi), and 2 additional depth strata (150-200m and 200-250 m) were included. In addition to the seasonal study one diurnal investigation with sampling every 6 h was conducted from 29 April at 12:00 h to 30 April 30 at 12:00 h. Samples were immediately preserved in buffered formalin (5% final concentration) for later analyses. Biomass values of the different copepod species were calculated based on measurements of prosome length, and length/weight relationships. Two regressions for Calanus spp. were established for biomass calculations: one applicable prior to and during the phytoplankton bloom until 4 May, and another from 9 May onwards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study site was located in the Disko Bay off Qeqertarsuaq, western Greenland. Due to land-connected sea ice coverage during winter, 2 sampling sites were combined. At the first site in winter (21 February to 23 March 2008), sampling was conducted through a hole in the ice at ca. 65 to 160 m depth approximately 0.5 nautical mile (n mile) south of Qeqertarsuaq (69° 14' N, 53° 29' W). In spring and summer (9 April to 18 July), sampling was done at a monitoring station 1 n mile south from Qeqertarsuaq (69° 14' N, 53° 23' W) at 300 m depth. Sampling was carried out between 10:00 and 17:00 h. During sampling from the ice, mesozooplankton was collected using a modified WP-2 net (45 µm) equipped with a closing mechanism (Hydrobios). Samples were collected in 3 depth strata (0-50, 50-100, and 100-150 m). During ship-based sampling, mesozooplankton was collected with a multinet (50 µm) equipped with a flow meter (Multinet, Hydrobios type midi), and 2 additional depth strata (150-200m and 200-250 m) were included. In addition to the seasonal study one diurnal investigation with sampling every 6 h was conducted from 29 April at 12:00 h to 30 April 30 at 12:00 h. Samples were immediately preserved in buffered formalin (5% final concentration) for later analyses. Biomass values of the different copepod species were calculated based on measurements of prosome length, and length/weight relationships. Two regressions for Calanus spp. were established for biomass calculations: one applicable prior to and during the phytoplankton bloom until 4 May, and another from 9 May onwards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 - July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory reaction, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in September 2010 were determined for 10 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the RRS Discovery D356 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 10 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta(depth bot[m]-depth top [m]).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IIchthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in December 2009 were determined for 22 stations in the Benguela upwelling system, based on oblique Multinet hauls during the FRS Africana cruise AFR258. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. Densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study site was located in the Disko Bay off Qeqertarsuaq, western Greenland. Due to land-connected sea ice coverage during winter, 2 sampling sites were combined. At the first site in winter (21 February to 23 March 2008), sampling was conducted through a hole in the ice at ca. 65 to 160 m depth approximately 0.5 nautical mile (n mile) south of Qeqertarsuaq (69° 14' N, 53° 29' W). In spring and summer (9 April to 18 July), sampling was done at a monitoring station 1 n mile south from Qeqertarsuaq (69° 14' N, 53° 23' W) at 300 m depth. Sampling was carried out between 10:00 and 17:00 h. During sampling from the ice, mesozooplankton was collected using a modified WP-2 net (45 µm) equipped with a closing mechanism (Hydrobios). Samples were collected in 3 depth strata (0-50, 50-100, and 100-150 m). During ship-based sampling, mesozooplankton was collected with a multinet (50 µm) equipped with a flow meter (Multinet, Hydrobios type midi), and 2 additional depth strata (150-200m and 200-250 m) were included. In addition to the seasonal study one diurnal investigation with sampling every 6 h was conducted from 29 April at 12:00 h to 30 April 30 at 12:00 h. Samples were immediately preserved in buffered formalin (5% final concentration) for later analyses. Biomass values of the different copepod species were calculated based on measurements of prosome length, and length/weight relationships. Two regressions for Calanus spp. were established for biomass calculations: one applicable prior to and during the phytoplankton bloom until 4 May, and another from 9 May onwards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in March 2008 were determined for 32 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM07/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 32 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in September 2010 were determined for 10 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the RRS Discovery D356 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 10 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta(depth bot[m]-depth top [m]).