758 resultados para Type 1 Diabetes
Resumo:
Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease that destroys pancreatic beta cells, affecting glucose homeostasis. In T1DM, glucoregulation and carbohydrate oxidation may be altered in different ambient temperatures; however, current literature has yet to explore these mechanisms. This study examines the effects of 30 minutes of exercise at 65% VO2max in 5ºC, 20ºC and 35ºC in individuals with T1DM. No significant differences were observed for blood glucose across the 3 conditions (p = 0.442), but significance was found for core temperature, heat storage, and sweat rate (p < 0.01). Blood glucose was also shown to vary greatly between individuals among conditions. The mechanisms behind the differences in blood glucose may be due to the lack of significant glucagon production among conditions. These findings suggest that T1DM individuals may exercise submaximally for 30 minutes in different ambient temperatures without significant differences in glucoregulation.
Resumo:
Connected in Motion is a not for profit organization serving young adults with Type 1 diabetes. The organization hosted outdoor and experiential Type 1 diabetes education programs in January of2009 and 2010. The weekends provided non-clinical alternative Type 1 diabetes education to the underserved population of young adults within Canada. Six women living with Type I diabetes and between the ages of 22 and 30 participated in the Winter Slipstream weekends participated in this phenomenological research study. Through semi-structured interviews and artifact-elicitation interviews, ,{ the lived experiences of the participants were examined. Data analysis indicated that the sense of community created through outdoor programming and experiential education for young adults with Type I diabetes stimulated the development of self-efficacy and participant-perceived improvement in Type 1 diabetes self-management. There was no indication that outdoor and experiential Type I diabetes education had any impact on the development of autonomy among participants. Recommendations are made to encourage the successful implementation of further alternative (non-clinical) Type 1 diabetes education programs for young adults living with Type 1 diabetes.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in meal estimation
Resumo:
Considering the difficulty in the insulin dosage selection and the problem of hyper- and hypoglycaemia episodes in type 1 diabetes, dosage-aid systems appear as tremendously helpful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as the large intra-patient variability and food intake. This work addresses the prediction of glycaemia for a given insulin therapy face to parametric and input uncertainty, by means of modal interval analysis. As result, a band containing all possible glucose excursions suffered by the patient for the given uncertainty is obtained. From it, a safer prediction of possible hyper- and hypoglycaemia episodes can be calculated
Resumo:
Background. Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. Methods. Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. Results. The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1 beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. Conclusion. This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
TNF microsatellite and HLA class II polymorphisms were studied in 28 recently diagnosed Brazilian patients presenting type 1 diabetes mellitus (T1DM) and in 120 healthy controls. TNFa-e and HLA-DRB1/DQB1 alleles were identified using sets of sequence-specific primers. Compared to controls, the DRB1* 03 and DQBI*02 allele groups, TNFa1 allele, and the TNFa4-b5-c1-d4-e3 and TNFa10-b5-c1-d4-e3 haplotypes were overrepresented in patients. TNF microsatellite together with HLA polymorphisms is associated with type 1 diabetes in Brazilian patients, corroborating the participation of the MHC genes in disease susceptibility.
Resumo:
Objectives: We performed a prospective clinical study of the cochleovestibular symptoms and the risk cofactors and characteristics of hearing loss in patients with type 1 diabetes.Methods: Group I consisted of 40 patients with type I diabetes, and group 2 consisted of 20 control subjects without diabetes. All participants answered a questionnaire, and their medical records were reviewed. They also were submitted to otorhinolaryngological examinations and to auditory tests (pure tone audiometry and acoustic immitance and auditory brain stem response [ABR] tests).Results: Dyslipidemia, hypertension, retinopathy, and diabetic neuropathy were not frequent in the patients of group 1, but incipient nephropathy was present in 47.5% of them. The most frequent cochleovestibular symptoms were tinnitus and hearing loss. Sensorineural hearing loss was found in 4 patients of group I and was predominantly bilateral, symmetric, and affecting the high frequencies, coexisting with normal vocal discrimination. These patients had a longer time from diabetes diagnosis and had poor glycemia control. A delay of ABR interpeak latency I-III was observed in 11.25% of the group I ears. All patients of group 2 presented normal audiograms and ABR tests.Conclusions: In group 1, the most frequent cochleovestibular symptoms were tinnitus and hearing loss. The sensorineural hearing loss was mild, symmetric, and predominantly high-frequency. A delay of ABR interpeak latencies was detected in the patients of group I who had normal audiometric thresholds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Scarce information is available about the variation in the incidence of Type 1 diabetes in the Brazilian population in the last decades. Aim: The objective of this study was to assess the long-term trends (1986-2006) in the incidence of Type 1 diabetes in Bauru, São Paulo State, Brazil. Subjects and methods: The annual incidence of Type 1 diabetes (per 100,000 per yr) from 1986 to 2006 was determined in children yr of age, using the capture and recapture method. Results: A total of 176 cases were diagnosed in the study population. The overall incidence was 10.4/100,000 with a range of 2.82/100,000 in 1987 to 18.49/100,000 in 2002 representing a 6.56-fold increase within the same population. The estimated incidence, using the capture and recapture method varied from 2.82/100,000 per yr in 1987 to 27.20/100,000 per yr in 2002, representing a 9.6-fold variation. The global pattern of incidence variation was categorized as high (10-19.99/100,000 per yr), and very high (20/100,000 per yr) in 71.43% of the study-years. Incidence was slightly higher among females, Caucasians, children in the 5-9 yr of age range and belonging to lower socio-economic classes. Most diagnoses were established during the colder months and/or with higher pluviometric indexes. Conclusions: The incidence of Type 1 diabetes in children is increasing in Bauru, São Paulo State, Brazil, and the global pattern of incidence was classified as high or very high, mainly in the last 10 yr. All Brazilian regions should be involved in the study. (J. Endocrinol. Invest. 33: 373-377, 2010) (C)2010, Editrice Kurtis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Type I diabetes is a disease caused by autoimmune destruction of the beta cells in the pancreas that leads to a deficiency in insulin production. The aim of this study was to evaluate the prophylactic potential of a prime-boost strategy involving bacille Calmette-Guérin (BCG) and the pVAXhsp65 vaccine (BCG/DNAhsp65) in diabetes induced by streptozotocin (STZ) in C57BL/6 mice and also in spontaneous type 1 diabetes in non-obese diabetic (NOD) mice. BCG/DNAhsp65 vaccination in NOD mice determined weight gain, protection against hyperglycaemia, decreased islet inflammation, higher levels of cytokine production by the spleen and a reduced number of regulatory T cells in the spleen compared with non-immunized NOD mice. In the STZ model, however, there was no significant difference in the clinical parameters. Although this vaccination strategy did not protect mice in the STZ model, it was very effective in NOD mice. This is the first report demonstrating that a prime-boost strategy could be explored as an immunomodulatory procedure in autoimmune diseases. © 2013 British Society for Immunology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alveolar bone resorption results from the inflammatory response to periodontal pathogens. Systemic diseases that affect the host response, such as type 1 diabetes mellitus (DM1), can potentiate the severity of periodontal disease (PD) and accelerate bone resorption. However, the biological mechanisms by which DM1 modulates PD are not fully understood. The aim of this study was to determine the influence of DM1 on alveolar bone resorption and to evaluate the role of receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin (OPG) in osteoclastogenesis in rats. PD was induced by means of ligature in nondiabetic and in streptozotocyn-induced DM1 rats. Morphological and morphometric analyses, stereology and osteoclast counting were performed. RANKL and OPG mRNA levels, protein content, and location were determined. PD caused alveolar bone resorption, increased the number of osteoclasts in the alveolar bone crest and also promoted changes in RANKL/OPG mRNA expression. DM1 alone showed alveolar bone destruction and an increased number of osteoclasts at the periapical and furcal regions. DM1 exacerbated these characteristics, with a greater impact on bone structure, resulting in a low OPG content and a higher RANKL/OPG ratio, which correlated with prominent osteoclastogenesis. This work demonstrates that the effects of PD and DM1 enhance bone destruction, confirms the importance of the RANKL signaling pathway in bone destruction in DM1 in animal models and suggests the existence of alternative mechanisms potentiating bone degradation in PD.