951 resultados para Two-phase gas-solid flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: United States Atomic Energy Commission - USAEC. European Atomic Energy Community - EURATOM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid Molecular Dynamics/Fluctuating Hydrodynamics framework based on the analogy with two-phase hydrodynamics has been extended to dynamically tracking the feature of interest at all-atom resolution. In the model, the hydrodynamics description is used as an effective boundary condition to close the molecular dynamics solution without resorting to standard periodic boundary conditions. The approach is implemented in a popular Molecular Dynamics package GROMACS and results for two biomolecular systems are reported. A small peptide dialanine and a complete capsid of a virus porcine circovirus 2 in water are considered and shown to reproduce the structural and dynamic properties compared to those obtained in theory, purely atomistic simulations, and experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT`s hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple gas solid reactions involving one solid and N gaseous reactants are investigated in this study by using a matched asymptotic expansion technique. Two cases are particularly studied. In the first case all N chemical reaction rates are faster than the diffusion rate. While in the second case only M (M < N) chemical reaction rates are faster than the diffusion rate and the rates of the remaining (N-M) chemical reactions are comparable to that of diffusion. For these two cases the solid concentration profile behaves like a travelling wave. In the first case the wave front velocity is contributed linearly by all gaseous reactants (additive law) while in the second case this law does not hold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiphase flows, hyperbolic model, Godunov method, nozzle flow, nonstrictly hyperbolic