957 resultados para Tucídides, ca. 460-ca. 400 a. C.
Resumo:
A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
Resumo:
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C), and at ambient (ca. 400 µatm) or elevated pCO2 (ca. 700 µatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.
Resumo:
Mode of access: Internet.
Resumo:
[Inaug.-diss.]
Resumo:
Printed wrappers.
Resumo:
Mode of access: Internet.
Resumo:
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Prominent and well studied is the summer monsoon, but much less is known about late Holocene changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and d15N) in a well-laminated sediment core from the Pakistan continental margin. Weak winter monsoon intensities off Pakistan are indicated from 400 B.C. to 250 A.D. by reduced productivity and relatively high SST. At about 250 A.D., the intensity of the winter monsoon increased off Pakistan as indicated by a trend to lower SST. We infer that monsoon conditions were relatively unstable from ~500 to 1300 A.D., because primary production and SST were highly variable. Declining SST and elevated biological production from 1400 to 1900 A.D. suggest invigorated convective winter mixing by strengthening winter monsoon circulation, most likely a regional expression of colder climate conditions during the Little Ice Age on the Northern Hemisphere. The comparison of winter monsoon intensity with records of summer monsoon intensity suggests that an inverse relationship between summer and winter monsoon strength exists in the Asian monsoon system during the late Holocene, effected by shifts in the Intertropical Convergence Zone.
Resumo:
The Santa Eulalia plutonic complex (SEPC) is a late-Variscan granitic body placed in the Ossa-Morena Zone. The host rocks of the complex belong to metamorphic formations from Proterozoic to Lower Paleozoic. The SEPC is a ring massif (ca. 400 km2 area) composed by two main granitic facies with different colours and textures. From the rim to the core, there is (i) a peripheral pink medium- to coarse-grained granite (G0 group) involving large elongated masses of mafic and intermediate rocks, from gabbros to granodiorites (M group), and (ii) a central gray medium-grained granite (G1 group). The mafic to intermediate rocks (M group) are metaluminous and show wide compositions: 3.34–13.51 wt% MgO; 0.70–7.20 ppm Th; 0.84–1.06 (Eu/Eu*)N (Eu* calculated between Sm and Tb); 0.23–0.97 (Nb/Nb*)N (Nb* calculated between Th and La). Although involving the M-type bodies and forming the outer ring, the G0 granites are the most differentiated magmatic rocks of the SEPC, with a transitional character between metaluminous and peraluminous: 0.00–0.62 wt% MgO; 15.00–56.00 ppm Th; and 0.19–0.42 (Eu/Eu*)N ; 0.08–0.19 (Nb/Nb*)N [1][2]. The G1 group is composed by monzonitic granites with a dominant peraluminous character and represents the most homogeneous compositional group of the SEPC: 0.65–1.02 wt% MgO; 13.00–16.95 ppm Th; 0.57–0.70 (Eu/Eu*)N ; 0.14–0.16 (Nb/Nb*)N . According to the SiO2 vs. (Na2O+K2O–CaO) relationships, the M and G1 groups predominantly fall in the calc-alkaline field, while the G0 group is essencially alkali-calcic; on the basis of the SiO2 vs. FeOt/(FeOt+MgO) correlation, SEPC should be considered as a magnesian plutonic association [3]. New geochronological data (U-Pb on zircons) slightly correct the age of the SEPC, previously obtained by other methods (290 Ma, [4]). They provide ages of 306 2 Ma for the M group, 305 6 Ma for the G1 group, and 301 4 Ma for the G0 group, which confirm the late-Variscan character of the SEPC, indicating however a faintly older emplacement, during the Upper Carboniferous. Recent whole-rock isotopic data show that the Rb-Sr system suffered significant post-magmatic disturbance, but reveal a consistent set of Sm-Nd results valuable in the approach to the magmatic sources of this massif: M group (2.9 < Ndi < +1.8); G1 group (5.8 < Ndi < 4.6); G0 group (2.2 < Ndi < 0.8). These geochemical data suggest a petrogenetic model for the SEPC explained by a magmatic event developed in two stages. Initially, magmas derived from long-term depleted mantle sources (Ndi < +1.8 in M group) were extracted to the crust promoting its partial melting and extensive mixing and/or AFC magmatic evolution, thereby generating the G1 granites (Ndi < 4.6). Subsequently, a later extraction of similar primary magmas in the same place or nearby, could have caused partial melting of some intermediate facies (e.g. diorites) of the M group, followed by magmatic differentiation processes, mainly fractional crystallization, able to produce residual liquids compositionally close to the G0 granites (Ndi < 0.8). The kinetic energy associated with the structurally controlled (cauldron subsidence type?) motion of the G0 liquids to the periphery, would have been strong enough to drag up M group blocks as those occurring inside the G0 granitic ring.
Resumo:
The use of hindered amine light stabilizers (HALS) to retard thermo- and photo-degradation of polymers has become increasingly common. Proposed mechanisms of polymer stabilisation involve significant changes to the HALS chemical structure; however, reports of the characterisation of these modified chemical species are limited. To better understand the fate of HALS and determine their in situ modifications, desorption electrospray ionisation mass spectrometry (DESI-MS) was employed to characterise ten commercially available HALS present in polyester-based coil coatings. TINUVIN® 770, 292, 144, 123, 152, and NOR371; HOSTAVIN® 3052, 3055, 3050, and 3058 were separately formulated with a pigmented, thermosetting polyester resin, cured on metal at 262 C and analysed directly by DESI-MS. High-level ab initio molecular orbital theory calculations were also undertaken to aid the mechanistic interpretation of the results. For HALS containing N-substituted piperidines (i.e., N-CH3, N-C(O)CH3, and N-OR) a secondary piperidine (N-H) analogue was detected in all cases. The formation of these intermediates can be explained either through hydrogen abstraction based mechanisms or direct N-OR homolysis with the former dominant under normal service temperatures (ca. 25-80 C), and the latter potentially becoming competitive under the high temperatures associated with curing (ca. 230-260 C). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088cm(-1) provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.
Resumo:
Proteiinit ovat elämälle välttämättömiä orgaanisia yhdisteitä, jotka koostuvat yhdestä tai useammasta aminohappoketjusta. Proteiinien toiminnan määrää niiden kolmiulotteinen rakenne, joka taas riippuu pitkälti proteiinien aminohappojärjestyksestä, sekvenssistä. Proteiinien tunnettujen sekvenssien määrä kasvaa DNA-sekvensoinnin tuloksena selvästi nopeammin kuin selvitettyjen kolmiulotteisten rakenteiden, konformaatioiden, määrä. Proteiinien rakenteitakin tunnetaan jo lähes 45 000, joten niiden tilastollisella analyysillä on yhä merkittävämpi osuus uusien proteiinien rakenteen määrittämisessä, ennustamisessa ja suunnittelussa. Työssä etsittiin pentapeptidejä (viiden aminohapon pituisia ketjuja), joilla on sama konformaatio kaikissa tunnetuissa proteiinien rakenteissa. Näitä rakennuspalikoita voisi käyttää suoraviivaisessa proteiinien suunnittelussa halutun kolmiulotteisen rakenteen aikaansaamiseksi. Aineistona käytettiin proteiinitietopankin joulukuussa 2007 sisältämiä rakenteita, joihin kuului lähes 45 000 proteiinin kolmiulotteista rakennetta. Aineiston laajuuden takia rakennuspalikoita etsittiin kahdessa vaiheessa vertailemalla pentapeptidien rakenteen keskeisten atomien (CA, CB, O, C ja N) sijaintia proteiinien aminohappoketjuissa. Työssä löytyi yli 9000 rakennuspalikkaa, pentapeptidiä, joista jokaisella oli sama konformaatio yli 12 eri rakennetiedostossa, niissä ilmoitettujen tarkkuuksien rajoissa. Löydetyistä rakennuspalikoista 48:lla oli täysin sama konformaatio kaikkialla, mistä ne löydettiin. Näistä useimmin esiintyneitä voi käyttää suoraan proteiinien rakenneanalyysissä valmiina kolmiulotteisen rakenteen osina. Eri konformaatioihin laskostuvia identtisiä pentapeptidejä löytyi yli 266 000 kappaletta. Rakennuspalikoiden stabiiliudesta johtuen ne saattavat olla tärkeitä proteiinien fysikaalisen mallinnuksen tutkimus- ja vertailukohteina. Käytännön kannalta työn lupaavin tulos oli se, että rakennuspalikoita löytyi eri vasta-aineiden rakennetiedostoista. Ehkäpä juuri vasta-aineita voitaisiin suunnitella työssä esitetyillä menetelmillä.
Resumo:
The light emitted by flat panel displays (FPD) can be generated in many different ways, such as for example alternating current thin film electroluminescence (ACTFEL), liquid crystal display (LCD), light emitting diode (LED), or plasma display panel (PDP) technologies. In this work, the focus was on ACTFEL devices and the goal was to develop new thin film processes for light emitting materials in ACTFEL devices. The films were deposited with the atomic layer deposition (ALD) method, which has been utilized in the manufacturing of ACTFEL displays since the mid-1980s. The ALD method is based on surface-controlled self-terminated reactions and a maximum of one layer of the desired material can be prepared during one deposition cycle. Therefore, the film thickness can be controlled simply by adjusting the number of deposition cycles. In addition, both large areas and deep trench structures can be covered uniformly. During this work, new ALD processes were developed for the following thin film materials: BaS, CuxS, MnS, PbS, SrS, SrSe, SrTe, SrS1-xSex, ZnS, and ZnS1-xSex. In addition, several ACTFEL devices were prepared where the light emitting material was BaS, SrS, SrS1-xSex, ZnS, or ZnS1-xSex thin film that was doped with Ce, Cu, Eu, Mn, or Pb. The sulfoselenide films were made by substituting the elemental selenium for sulfur on the substrate surface during film deposition. In this way, it was possible to replace a maximum of 90% of the sulfur with selenium, and the XRD analyses indicated that the films were solid solutions. The polycrystalline BaS, SrS, and ZnS thin films were deposited at 180-400, 120-460, and 280-500 °C, respectively, and the processes had a wide temperature range where the growth rate of the films was independent of the deposition temperature. The electroluminescence studies showed that the doped sulfoselenide films resulted in low emission intensity. However, the emission intensities and emission colors of the doped SrS, BaS, and ZnS films were comparable with those found in earlier studies. It was also shown that the electro-optical properties of the different ZnS:Mn devices were different as a consequence of different ZnS:Mn processes. Finally, it was concluded that because the higher deposition temperature seemed to result in a higher emission intensity, the thermal stability of the reactants has a significant role when the light emitting materials of ACTFEL devices are deposited with the ALD method.
Resumo:
High-temperature reactions (Ca 900-degrees-C) involving albite, K-feldspar or plagioclase and K, Ba-or K, Sr chlorides were experimentally studied. These experiments reveal that the reaction between K-exchanged albite, potash feldspar, or plagioclase and Ba-chloride/Ba-K chloride results in the formation of celsian by the breakdown of the starting feldspar structure above 800-degrees-C. Sr-feldspar does not form under similar conditions. A size-effect of the large M-site cation appears to be responsible for the formation of celsian. The reaction between K-feldspar and barium chloride may be used as a method for synthesizing celsian.
Resumo:
Garnet-kyanite-staurolite gneiss in the Pangong complex, Ladakh Himalaya, contains porphyroblastic euhedral garnets, blades of kyanite and resorbed staurolite surrounded by a fine-grained muscovite-biotite matrix associated with a leucogranite layer. Sillimanite is absent. The gneiss contains two generations of garnet in cores and rims that represent two stages of metamorphism. Garnet cores are extremely rich in Mn (X(Sps) = 0.35-038) and poor in Fe (X(Alm) = 0.40-0.45), whereas rims are relatively Mn-poor (X(Sps) =0.07-0.08), and rich in Fe (X(Alm), = 0.75-0.77). We suggest that garnet cores formed during prograde metamorphism in a subduction zone followed by abrupt exhumation, during early collision of the Ladakh arc and Karakoram block. The subsequent India-Asia continental collision subducted the metamorphic rocks to a mid-crustal level, where the garnet rims overgrew the Mn-rich cores at ca. 680 degrees C and ca. 8.5 kbar. PT calculations were estimated from phase diagrams calculated using a calculated bulk chemical composition in the Mn-NCKFMASHT system for the garnet-kyanite-staurolite-bearing assemblage. Muscovites from the metamorphic rocks and associated leucogranites have consistent K-Ar ages (ca. 10 Ma), closely related to activation of the Karakoram fault in the Pangong metamorphic complex. These ages indicate the contemporaneity of the exhumation of the metamorphic rocks and the cooling of the leucogranites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.