963 resultados para Triple helix


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a Mendelian disease with genetic heterogeneity characterized by bone fragility, recurrent fractures, blue sclerae, and short stature, caused mostly by mutations in COL1A1 or COL1A2 genes, which encode the pro-alpha 1(I) and pro-alpha 2(I) chains of type I collagen, respectively. A Brazilian family that showed variable expression of autosomal dominant OI was identified and characterized. Scanning for mutations was carried out using SSCP and DNA sequence analysis. The missense mutation c.3235G>A was identified within exon 45 of the COL1A1 gene in a 16-year-old girl diagnosed as having OI type I; it resulted in substitution of a glycine residue (G) by a serine (S) at codon 1079 (p.G1079S). The proband's mother had the disease signs, but without bone fractures, as did five of nine uncles and aunts of the patient. All of them carried the mutation, which was excluded in four healthy brothers of the patient's mother. This is the first description in a Brazilian family with OI showing variable expression; only one among seven carriers for the c.3235G>A mutation developed bone fractures, the most striking clinical feature of this disease. This finding has a significant implication for prenatal diagnosis in OI disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The uplift capacity of helical anchors normally increases with the number of helical plates. The rate of capacity gain is variable, considering that the disturbance caused by the anchor installation is generally more pronounced in the soil mass above the upper plates than above the lower plates, because the upper soil layers are penetrated more times. The present investigation examines the effect of the number of helices on the performance of helical anchors in sand, based on the results of centrifuge model tests. Uplift loading tests were performed on 12 different types of piles installed in two containers of dry sand prepared with different densities. The measured fractions of the uplift capacity related to each individual helical plate of multi-helix anchors were compared with the fractions predicted by the individual bearing method. The results of this investigation indicate that in double- and triple-helix anchors, the contributions of the second and third plate to the total anchor uplift capacity decreased with the increase of sand relative density and plate diameter. In addition, these experiments demonstrated that the variation of the anchor load-displacement behavior with the number of helices also depends on these parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellular affinity, however it lacks in mechanical properties. This problem was overcome by adding poly(lactic acid) to the scaffold through co-electrospinning and mechanical properties of the composite constructs were assessed. Gelatin effectively improves cell growth and viability and worth noting, composite scaffolds of gelatin and poly(lactic acid) were more effective than a plain gelatin scaffold. Scaffolds made of pure collagen fibers were fabricated. Modification of collagen triple helix structure in electrospun collagen fibers was studied. Mechanical properties were evaluated before and after crosslinking. The crosslinking procedure was developed and optimized by using - for the first time on electrospun collagen fibers - the crosslinking reactant 1,4-butanediol diglycidyl ether, with good results in terms of fibers stabilization. Cell culture experiments showed good results in term of cell adhesion and morphology. The fiber surface chemistry of electrospun poly(lactic acid) scaffold was modified by plasma treatment. Plasma did not affect thermal and mechanical properties of the scaffold, while it greatly increased its hydrophilicity by the introduction of carboxyl groups at the fiber surface. This fiber functionalization enhanced the fibroblast cell viability and spreading. Surface modifications by chemical reactions were conducted on electrospun scaffolds made of a polysophorolipid. The aim was to introduce a biomolecule at the fiber surface. By developing a series of chemical reactions, one oligopeptide every three repeating units of polysophorolipid was grafted at the surface of electrospun fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hereditary equine dermal asthenia (HERDA) is an autosomal recessive skin disease that affects predominantly Quarter Horses and related breeds. Typical symptoms are easy bruising and hyperextensible skin on the back. The prognosis is guarded, as affected horses cannot be ridden normally and are often euthanised. In the Quarter Horse, HERDA is associated with a mutation in cyclophilin B (PPIB), an enzyme involved in triple helix formation of collagen. Here we describe the case of a Swiss Warmblood filly with symptoms of HERDA without PPIB-mutation and in which we also could exclude Ehlers-Danlos syndrome Type IV, VI, VIIA, VIIB and VIIC (dermatosparaxis type) as etiological diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This minireview highlights three aspects of our recent work in the area of sugar modified oligonucleotide analogues. It provides an overview over recent results on the conformationally constrained analogue tricyclo-DNA with special emphasis of its antisense properties, it summarizes results on triple-helix forming oligodeoxynucleotides containing pyrrolidino-nucleosides with respect to DNA recognition via the dual recognition mode, and it highlights the advantageous application of the orthogonal oligonucleotidic pairing system homo-DNA in molecular beacons for DNA diagnostics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA triple helix based approaches to control and modulate cellular functions on the level of genomic DNA (antigene technology) suffered in the past from a stepmother like treatment in comparison to the flourishing field of oligonucleotide based control of translation (antisense technology). This was mostly due to lack of affinity of triplex forming oligonucleotides (TFOs) to their DNA target, to sequence restriciton constraints imposed by the triple helical recogniton motifs and by open questions to the accessibility of the target DNA. Recent developments in the area have brought about new bases that specifically recognize pyrimidine-purine inversion sites as well as sugar modifications, e.g. the 2'-aminoethoxy-oligonucleotides or oligonucleotides based on the locked nucleic acid (LNA) sugar unit, that greatly enhance triplex stability and alleviate in part the sequence restriction constraints. With this, sequence specific genomic DNA manipulation starts to become a useful tool in biotechnology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The DNA analogue tricyclo-DNA, built from conformationally rigid nucleoside analogues that were linked via tertiary phosphodiester functions, can efficiently be synthesized from the corresponding phosphoramidites by conventional solid-phase cyanoethyl phosphoramidite chemistry. 5'-End phosphorylated tricyclo-DNA sequences are chemically stable in aqueous, pH-neutral media at temperatures from 0 to 90 C. Tricyclo-DNA sequences resist enzymatic hydrolysis by the 3'-exonuclease snake venom phosphodiesterase. Homobasic adenine- and thymine-containing tricyclo-DNA octa- and nonamers are extraordinarily stable A-T base-pairing systems, not only in their own series but also with complementary DNA and RNA. Base mismatch formation is strongly destabilized. As in bicyclo-DNA, the tricyclo-DNA purine sequences preferentially accept a complementary strand on the Hoogsteen face of the base. A thermodynamic analysis reveals entropic benefits in the case of hetero-backbone duplex formation (tricyclo-DNA/DNA duplexes) and both an enthalpic and entropic benefit for duplex formation in the pure tricyclo-DNA series compared to natural DNA. Stability of tricyclo-DNA duplex formation depends more strongly on monovalent salt concentration compared to natural DNA. Homopyrimidine DNA sequences containing tricyclothymidine residues form triplexes with complementary double-stranded DNA. Triple-helix stability depends on the sequence composition and can be higher when compared to that of natural DNA. The use of one tricyclothymidine residue in the center of the self-complementary dodecamer duplex (d(CGCGAAT t CGCG), t = tricyclothymidine) strongly stabilizes its monomolecular hairpin loop structure relative to that of the corresponding pure DNA dodecamer ( T m = +20 C), indicating (tetra)loop-stabilizing properties of this rigid nucleoside analogue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on two regions in the United States that have emerged as high-technology regions in the absence of major research universities. The case of Portland's Silicon Forest is compared to Washington, DC. In both regions, high-technology economies grew because of industrial restructuring processes. The paper argues that in both regions other actors—such as firms and government laboratories—spurred the development of knowledge-based economies and catalysed the engagement of higher education institutions in economic development. The paper confirms and advances the triple helix model of university–government–industry relationships and posits that future studies have to examine degrees of university-region engagement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of a triple helix resulting from oligonucleotide binding to the DNA double helix offers new possibilities to control gene expression at the transcriptional level. Purine-motif triplexes can be formed under physiological pH. Nevertheless, this formation was inhibited by certain monovalent cations during the association but not during dissociation. Since triplexes are very stable, it was possible to assemble them in the absence of KCl and have them survive throughout the course of an in vitro transcription reaction. As for the design of a better triplex-forming oligonucleotide, 12 nucleotides in length afforded the highest binding affinity. G/T-rich oligonucleotides can be very polymorphic in solution. The conditions for forming purine-motif triplexes, duplexes or G-quartets were determined. Understanding these parameters will be important for the practical use of G-rich oligonucleotides in the development of DNA aptamers where the structure of the oligonucleotide is paramount in dictating its function. Finally, purine-motif triplexes were demonstrated to significantly inhibit gene transcription in vitro. The optimal effect on this process was dependent on the location of triplexes within the promoter, i.e., whether upstream or proximally downstream of the transcription start site. The mechanism for the inhibition of transcription appeared to be interference with initiation through preventing engagement by RNA polymerase. This finding is revolutionary when compared to the conventional model where triplexes inhibit transcription only by occluding binding by trans-acting proteins. Our findings broaden the utility of triplexes and support a strategy for antigene therapy by triplexes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending.