878 resultados para Transcription, Genetic -- drug effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Stimulation of beta(1)- and beta(2)-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta(3)AR is also expressed in the human heart and that its stimulation leads to negative inotropic effects. METHODS AND RESULTS: To better understand the role of beta(3)ARs in cardiac function, we generated transgenic mice with cardiac-specific overexpression of 330 fmol/mg protein of the human beta(3)AR (TGbeta(3) mice). Hemodynamic characterization was performed by cardiac catheterization in closed-chest anesthetized mice, by pressure-volume-loop analysis, and by echocardiography in conscious mice. After propranolol blockade of endogenous beta(1)- and beta(2)ARs, isoproterenol resulted in an increase in contractility in the TGbeta(3) mice (30%), with no effect in wild-type mice. Similarly, stimulation with the selective human beta(3)AR agonist L-755,507 significantly increased contractility in the TGbeta(3) mice (160%), with no effect in wild-type mice, as determined by hemodynamic measurements and by end-systolic pressure-volume relations. The underlying mechanism of the positive inotropy incurred with L-755,507 in the TGbeta(3) mice was investigated in terms of beta(3)AR-G-protein coupling and adenylyl cyclase activation. Stimulation of cardiac membranes from TGbeta(3) mice with L-755,507 resulted in a pertussis toxin-insensitive 1.33-fold increase in [(35)S]GTPgammaS loading and a 1.6-fold increase in adenylyl cyclase activity. CONCLUSIONS: Cardiac overexpression of human beta(3)ARs results in positive inotropy only on stimulation with a beta(3)AR agonist. Overexpressed beta(3)ARs couple to G(s) and activate adenylyl cyclase on agonist stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca(2+) transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific gamma interferon (IFN-gamma) has been demonstrated to participate in protection against Bordetella pertussis infection. Circulating mononuclear cells from B. pertussis-infected and from pertussis-vaccinated infants secrete high amounts of IFN-gamma after in vitro stimulation by B. pertussis antigens, but with a large variation in the secreted IFN-gamma levels between individuals. We show here that the inhibition of the specific IFN-gamma response can be at least partially attributed to IL-10 secretion by monocytes. This IL-10 secretion was not associated with polymorphisms at positions -1082, -819, and -592 of the IL-10 gene promoter, suggesting that other genetic or environmental factors affect IL-10 expression and secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most potent steroid in human prostatic carcinoma LNCaP cells, i.e. dihydrotestosterone (DHT), has a biphasic stimulatory effect on cell proliferation. At the maximal stimulatory concentration of 0.1 nM DHT, analysis of cell kinetic parameters shows a decrease of the G0-G1 fraction with a corresponding increase of the S and G2 + M fractions. In contrast, concentrations of 1 nM DHT or higher induce a return of cell proliferation to control levels, reflected by an increase in the G0-G1 fraction at the expense of the S and especially the G2 + M fractions. Continuous labeling for 144 h with the nucleotide analogue 5'-bromodeoxyuridine shows that the percentage of cycling LNCaP cells rises more than 90% after treatment with stimulatory concentrations of DHT, whereas in control cells as well as in cells treated with high concentrations of the androgen, this value remains below 50%. Although LNCaP cells do not contain detectable estrogen receptors, the new pure steroidal antiestrogen EM-139 not only reversed the stimulation of cell proliferation and cell kinetics induced by stimulatory doses of DHT but also inhibited basal cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent inhibition (LI) is a measure of reduced learning about a stimulus to which there has been prior exposure without any consequence. It therefore requires a comparison between a pre-exposed (PE) and a non-pre-exposed (NPE) condition. Since, in animals, LI is disrupted by amphetamines and enhanced by antipsychotics, LI disruption has been proposed as a measure of the characteristic attentional deficit in schizophrenia: the inability to ignore irrelevant stimuli. The findings in humans are, however, inconsistent. In particular, a recent investigation suggested that since haloperidol disrupted LI in healthy volunteers, and LI was normal in non-medicated patients with schizophrenia, the previous findings in schizophrenic patients were entirely due to the negative effects of their medication on LI (Williams et al., 1998). We conducted two studies of antipsychotic drug effects on auditory LI using a within-subject, parallel group design in healthy volunteers. In the first of these, single doses of haloperidol (1 mg. i.v.) were compared with paroxetine (20 mg p.o.) and placebo, and in the second, chlorpromazine (100 mg p.o.) was compared with lorazepam (2 mg. p.o.) and placebo. Eye movements, neuropsychological test performance (spatial working memory (SWM), Tower of London and intra/extra dimensional shift, from the CANTAB test battery) and visual analogue rating scales, were also included as other measures of attention and frontal lobe function. Haloperidol was associated with a non-significant reduction in LI scores, and dysphoria/akathisia (Barnes Akathisia Rating Scale) in three-quarters of the subjects. The LI finding may be explained by increased distractibility which was indicated by an increase in antisaccade directional errors in this group. In contrast, LI was significantly increased by chlorpromazine but not by an equally sedative dose of lorazepam (both drugs causing marked decreases in peak saccadic velocity). Paroxetine had no effect on LI, eye movements or CANTAB neuropsychological test performance. Haloperidol was associated with impaired SWM, which correlated with the degree of dysphoria/akathisia, but no other drug effects on CANTAB measures were detected. We conclude that the effect of antipsychotics on LI is both modality and pharmacologically dependent and that further research using a wider range of antipsychotic compounds is necessary to clarify the cognitive effects of these drugs, and to determine whether there are important differences between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. METHODS: Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. RESULTS: Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p<or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p<or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p<or =0.0001). CONCLUSION/INTERPRETATION: This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.

Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.

Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).

Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of microarray technology to the scientific and medical communities has fundamentally altered the way in which we now address basic biomedical questions. Microarrays technology facilitates a more complete and inclusive experimental approach where alterations in the transcript level of entire genomes can be simultaneously assayed in response to a variety of stimuli. Conceptually different approaches to the development of microarray technology have resulted in the generation of two different array formats: oligonucleotide arrays and cDNA arrays. The application of microarray and related technologies to identify specific targets of defined genes that have clearly been implicated in cancer progression requires a specific experimental approach. The objective of tiffs approach is to define changes in transcriptional profile that occur in response to modulating the expression level of the gene to be studied. The resulting altered expression profile can then be viewed as a blueprint by which that gene effects its cellular function. We have used oligonucleotide array-based expression profiling in collaboration with Affymetrix to identify downstream transcriptional targets of the BRCA1 tumor-suppressor gene as a means of defining its function. BRCA1 has been implicated in at least three functional pathways, namely, mediating the cellular response to DNA damage, as a cell cycle checkpoint protein and in the regulation of transcription. The physiological significance of these properties and their implications for the function of BRCA1 as a tumor-suppressor gene remain to be defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is a heterogeneous disease and several distinct subtypes exist based on differential gene expression patterns. Molecular apocrine tumours were recently identified as an additional subgroup, characterised as oestrogen receptor negative and androgen receptor positive (ER- AR+), but with an expression profile resembling ER+ luminal breast cancer. One possible explanation for the apparent incongruity is that ER gene expression programmes could be recapitulated by AR. Using a cell line model of ER- AR+ molecular apocrine tumours (termed MDA-MB-453 cells), we map global AR binding events and find a binding profile that is similar to ER binding in breast cancer cells. We find that AR binding is a near-perfect subset of FoxA1 binding regions, a level of concordance never previously seen with a nuclear receptor. AR functionality is dependent on FoxA1, since silencing of FoxA1 inhibits AR binding, expression of the majority of the molecular apocrine gene signature and growth cell growth. These findings show that AR binds and regulates ER cis-regulatory elements in molecular apocrine tumours, resulting in a transcriptional programme reminiscent of ER-mediated transcription in luminal breast cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

50 years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale gave us the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled use of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (1) modification of their permeability, (2) modification of target, and (3) modification of the antibiotic. Bacteria modify their permeability either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacterium--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and multiresistant Mycobacterium tuberculosis, have become resistant to almost all available antibiotics and there are only one or two substances still active against such organisms. Antibiotics are very precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (1) choose the most efficient antibiotic according to clinical and local epidemiological data, (2) target the bacteria according to the microbiological data at hand, and (3) administer the antibiotic in an adequate dose which will leave the pathogen no chance to develop resistance.