989 resultados para Traffic volume.
Resumo:
Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.
Resumo:
Commuting in various transport modes represents an activity likely to incur significant exposure to traffic emissions. This study investigated the determinants and characteristics of exposure to ultrafine (< 100 nm) particles (UFPs) in four transport modes in Sydney, with a specific focus on exposure in automobiles, which remain the transport mode of choice for approximately 70% of Sydney commuters. UFP concentrations were measured using a portable condensation particle counter (CPC) inside five automobiles commuting on above ground and tunnel roadways, and in buses, ferries and trains. Determinant factors investigated included wind speed, cabin ventilation (automobiles only) and traffic volume. The results showed that concentrations varied significantly as a consequence of transport mode, vehicle type and ventilation characteristics. The effects of wind speed were minimal relative to those of traffic volume (especially heavy diesel vehicles) and cabin ventilation, with the latter proving to be a strong determinant of UFP ingress into automobiles. The effect of ~70 minutes of commuting on total daily exposure was estimated using a range of UFP concentrations reported for several microenvironments. A hypothetical Sydney resident commuting by automobile and spending 8.5 minutes of their day in the M5 East tunnel could incur anywhere from a lower limit of 3-11% to an upper limit of 37-69% of daily UFP exposure during a return commute, depending on the concentrations they encountered in other microenvironments, the type of vehicle they used and the ventilation setting selected. However, commute-time exposures at either extreme of the values presented are unlikely to occur in practice. The range of exposures estimated for other transport modes were comparable to those of automobiles, and in the case of buses, higher than automobiles.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
The 2011 floods in Southeast Queensland had a devastating impact on many sectors including transport. Road and rail systems across all flooded areas of Queensland were severely affected and significant economic losses occurred as a result of roadway and railway closures. Travellers were compelled to take alternative routes because of road closures or deteriorated traffic conditions on their regular route. Extreme changes in traffic volume can occur under such scenarios which disrupts the network re-equilibrium and re-stabilisation in the recovery phase as travellers continuously adjust their travel options. This study explores how travellers respond to such a major network disruption. A comprehensive study was undertaken focusing on how bus riders reacted to the floods in Southeast Queensland by comparing the ridership patterns before, during and after the floods. The study outcomes revealed the evolving reactions of transit users to direct and indirect impacts of a natural disaster. A good understanding of this process is crucial for developing appropriate strategies to encourage modal shift of automobile users to public transit and also for modelling of travel behaviours during and after a major network disruption caused by natural disasters.
Resumo:
Weaving sections, a common design of motorways, require extensive lane-change manoeuvres. Numerous studies have found that drivers tend to make their lane changes as soon as they enter the weaving section, as the traffic volume increases. Congestion builds up as a result of this high lane-changing concentration. Importantly, such congestion also limits the use of existing infrastructure, the weaving section downstream. This behaviour thus affects both safety and operational aspects. The potential tool for managing motorways effectively and efficiently is cooperative intelligent transport systems (C-ITS). This research investigates a lane-change distribution advisory application based on C-ITS for weaving vehicles in weaving sections. The objective of this research is to alleviate the lane-changing concentration problem by coordinating weaving vehicles to ensure that such lane-changing activities are evenly distributed over the existing weaving length. This is achieved by sending individual messages to drivers based on their location to advise them when to start their lane change. The research applied a microscopic simulation in AIMSUN to evaluate the proposed strategy’s effectiveness in a one-sided ramp weave. The proposed strategy was evaluated using different weaving advisory proportions, traffic demands and penetration rates. The evaluation revealed that the proposed lane-changing advisory has the potential to significantly improve delay.
Resumo:
This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.
Resumo:
Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.
Resumo:
Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.
Resumo:
Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
INTRODUCTION : En milieu urbain, l’amélioration de la sécurité des piétons pose un défi de santé publique. Pour chaque décès attribuable aux collisions routières, il y a des centaines de personnes blessées et, dans les pays riches, la diminution du nombre annuel de piétons décédés s’expliquerait en partie par la diminution de la marche. Les stratégies préventives prédominantes n’interviennent pas sur le volume de circulation automobile, un facteur pourtant fondamental. De plus, les interventions environnementales pour améliorer la sécurité des infrastructures routières se limitent habituellement aux sites comptant le plus grand nombre de décès ou de blessés. Cette thèse vise à décrire la contribution des volumes de circulation automobile, des pratiques locales de marche et de la géométrie des routes au nombre et à la répartition des piétons blessés en milieu urbain, et d’ainsi établir le potentiel d’une approche populationnelle orientée vers la reconfiguration des environnements urbains pour améliorer la sécurité des piétons. MÉTHODE : Le devis est de type descriptif et transversal. Les principales sources de données sont les registres des services ambulanciers d’Urgences-santé (blessés de la route), l’enquête Origine-Destination (volumes de circulation automobile), la Géobase du réseau routier montréalais (géométrie des routes) et le recensement canadien (pratiques locales de marche, position socioéconomique). Les analyses descriptives comprennent la localisation cartographique (coordonnées x,y) de l’ensemble des sites de collision. Des modèles de régression multi-niveaux nichent les intersections dans les secteurs de recensement et dans les arrondissements. RÉSULTATS : Les analyses descriptives démontrent une grande dispersion des sites de collision au sein des quartiers. Les analyses multivariées démontrent les effets significatifs, indépendants du volume de circulation automobile, de la présence d’artère(s) et d’une quatrième branche aux intersections, ainsi que du volume de marche dans le secteur, sur le nombre de piétons blessés aux intersections. L’analyse multi-niveaux démontre une grande variation spatiale de l’effet du volume de circulation automobile. Les facteurs environnementaux expliquent une part substantielle de la variation spatiale du nombre de blessés et du gradient socioéconomique observé. DISCUSSION : La grande dispersion des sites de collision confirme la pertinence d’une approche ne se limitant pas aux sites comptant le plus grand nombre de blessés. Les résultats suggèrent que des stratégies préventives basées sur des approches environnementales et populationnelle pourraient considérablement réduire le nombre de piétons blessés ainsi que les inégalités observées entre les quartiers.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.
Resumo:
Nos últimos de 20 anos, economia e tecnologia evoluíram em muitas direções e em novas áreas. Muitas dessas evoluções criaram oportunidades que estão sendo consideradas na concepção de futuras redes de comunicação. Estas novas possibilidades estão relacionadas à, sobretudo, utilização da internet para o acesso à serviços e englobam: mobilidade; tecnologias de baixo custo; crescimento e empregos (pela Internet participa-se de cada processo de negócios e produção); serviços; educação (oportunidade para as pessoas crescerem e se desenvolverem); entretenimento (mundos virtuais para o lazer, compras e jogos); volume de tráfego maior (texto, voz, imagens, vídeo). Como uma consequência, a Internet se tornou, semelhante a eletricidade ou água, um bem público. Com quase 2 bilhões de usuários (aproximadamente 28% da população mundial), a Internet está se tornando, cada vez mais, uma infraestrutura difusivo oferecendo em qualquer lugar, a qualquer momento conectividade e serviços. Este mundo da Internet atual é o resultado de sucessivas alterações que aconteceram desde o seu surgimento e que tornaram a infraestrutura de comunicação de importância crítica. Em termos de tecnologias de comunicação, os sistemas móveis sem fio têm um lugar especial devido a sua difusão excepcional na última década e que, junto com a Internet, tem permitido o aparecimento de dispositivos inteligentes, a introdução de novos serviços inovadores e exigindo, para tanto, um ambiente que suporte a inovação e criatividade. Porém, os vários padrões de redes para suporte, principalmente, ao acesso de última milha são desvantagens na perspectiva do usuário, pois este tem de se habilitar nessas redes (contratar os serviços) e, não raro, ter terminais específicos para o acesso. A idéia de um padrão único para estas redes não obteve resultados satisfatórios e uma solução aponta para a integração dessas redes para prover acesso único e transparente ao usuário. Esse trabalho, portanto, apresenta uma solução embarcada para integrar padrões de comunicações sem fio heterogênea do tipo IEEE 802.15.4 ZigBee, IEEE 802.20 GSM/GPRS e IEEE 802.2 Wi-Fi. Essa heterogeneidade de tecnologias sem fio permite a um usuário em movimento, através de seu terminal local ou remoto, acessar aplicativos e serviços de forma transparente. A avaliação de desempenho da solução foi realizada utilizando-se dois tipos de serviços: domótica e telemedicina. Os resultados indicaram que a solução proposta consegue integrar e prover os serviços com segurança e confiabilidade.
Resumo:
Context. The giant anteater, Myrmecophaga tridactyla, is a large insectivorous mammal from Cerrado which is classified as vulnerable by the IUCN's red list. In spite of frequent giant anteater casualties, there continues to be a lack of published data on how road and landscape attributes affect road-kill rates - information that could prove useful in guiding mitigation measures.Aims. We seek to determine whether road and landscape attributes influence the incidence of road-kills of the giant anteater.Methods. From February 2002 to December 2012 (except for 2004), five roads in two regions in south-eastern Brazil were surveyed twice each month by car. We recorded temporal road-kill data for the giant anteater and related spatial road variables. These variables were also recorded at regular control sites every 2 km. We also took traffic volume data on stretches of the two roads to correlate with road-kills.Key results. Of the 45 anteater casualties recorded, there was a predominance of adult males. On roads MG-428 and SP-334, we found anteater road-kills were more common in the dry season, negatively correlated with traffic volume and related to the presence of native vegetation. Accordingly, road-kill sites tended to occur near the cerrado and grasslands and also appeared more frequently on some straight stretches of roadways. Although it was not shown to influence road-kill rates, topography data does point to regular overpass/underpass locations allowing population connectivity. Termitaria or ant nests were present at all road-kill sites, with 86% having signs of feeding.Conclusions. Native vegetation along roadways, together with straight road design, increases the probability of anteater road-kills by 40.1%.Implications. For mitigation, mowing and removing insect nests on roadsides, as well as roadside wildlife fencing in cerrado and grassland areas is suggested. Warning signs and radar to reduce vehicle speed are recommended for both human safety and anteater conservation. With regard to population connectivity, the absence of aggregated anteater road-kill data in this study meant that there were no particular crossing locations identified. However, the collected topography data do show places that could be used for roadway crossings. The measures indicated may apply to similar species and types of topography on other continents.