711 resultados para Thermotolerant yeasts
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A total of 137 yeasts associated with the leaf-cutting ant Atta sexdens rubropilosa Forel, 1908 were characterized, being selected 93 for analysis. Twenty four species belonging to seven genera(Candida, Cryptococcus, Rhodotorula, Sporobolomyces, Tremella, Trichosporon, Pichia) were isolated from the different analysed material. The genus Candida was widely distributed, with C. homilentoma, C. colliculosa-like, C. famata and C. colliculosa being the most prevalent. A few isolates did not fit the standard descriptions and probably some of them could be new biotypes or even new species. Three strains of black yeasts were also isolated, and four others were identified as being Candida spp. The effective number of yeast species was higher in newer sponge. The origin, distribution and relative importance of these microorganisms for the ants are discussed.
Resumo:
Aims: the aim of this study was to obtain improved strains of pectinolytic yeasts adapted to the conditions of an industrial fermentation process, which was continuously operated to convert citrus molasses into ethanol.Methods and Results: the starter yeast of the industrial fermentation process was a commercial baker's yeast, which was capable of growing without forming any secretion halo of pectinase activity on solid medium. Nevertheless, isolates showing secretion of pectinolytic activity on plates were obtained from the fermentation process. The secretion of pectin-degrading activity by isolates on plates was repressed by galactose and improved as the result of colony aging on polygalacturonic acid plates at 30 degrees C. Liquefaction of polygalacturonate gels as well as the splitting of the pectin-degrading activity into a wall-linked and a supernatant fraction were also observed when the starter yeast was propagated under agitation in liquid medium containing pectin.Conclusions: Isolates capable of secreting pectinolytic activity on plates were predominant at the end of the citrus molasses fermentation. Nevertheless, the sizes of the secretion haloes on plates were not necessarily an indication of the levels of pectinolytic activity secreted in the liquid medium.Significance and Impact of the Study: Improved pectinolytic strains of Saccharomyces can be used as a source of pectinases for a variety of applications. This organism also participates in plant deterioration processes.
Resumo:
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.
Resumo:
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.
Resumo:
In the beginning there was yeast, and it raised bread, brewed beer, and made wine. After many not days but centuries and even millenia later, it was named Saccharomyces cerevisiae. After more years and centuries there was another yeast, and it was named Schizo-saccharomyces pombe; now there were two stars in the yeast heaven. In only a few more years there were other yeasts, and then more, and more, and more. The era of the non-conventional yeasts had begun.