993 resultados para Thermal aging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current design life of nuclear power plant (NPP) could potentially be extended to 80 years. During this extended plant life, all safety and operationally relevant Instrumentation & Control (I&C) systems are required to meet their designed performance requirements to ensure safe and reliable operation of the NPP, both during normal operation and subsequent to design base events. This in turn requires an adequate and documented qualification and aging management program. It is known that electrical insulation of I&C cables used in safety related circuits can degrade during their life, due to the aging effect of environmental stresses, such as temperature, radiation, vibration, etc., particularly if located in the containment area of the NPP. Thus several condition monitoring techniques are required to assess the state of the insulation. Such techniques can be used to establish a residual lifetime, based on the relationship between condition indicators and ageing stresses, hence, to support a preventive and effective maintenance program. The object of this thesis is to investigate potential electrical aging indicators (diagnostic markers) testing various I&C cable insulations subjected to an accelerated multi-stress (thermal and radiation) aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric membranes represent a promising technology for gas separation processes, thanks to low costs, reduced energy consumption and limited waste production. The present thesis aims at studying the transport properties of two membrane materials, suitable for CO2 purification applications. In the first part, a polyimide, Matrimid 5218, has been throughout investigated, with particular reference to the effect of thermal treatment, aging and the presence of water vapor in the gas transport process. Permeability measurements showed that thermal history affects relevantly the diffusion of gas molecules across the membrane, influencing also the stability of the separation performances. Subsequently, the effect of water on Matrimid transport properties has been characterized for a wide set of incondensable penetrants. A monotonous reduction of permeability took place at increasing the water concentration within the polymer matrix, affecting the investigated gaseous species to the same extent, despite the different thermodynamic and kinetic features. In this view, a novel empirical model, based on the Free Volume Theory, has been proposed to qualitatively describe the phenomenon. Moreover, according to the accurate representation of the experimental data, the suggested approach has been combined with a more rigorous thermodynamic tool (NELF Model), allowing an exhaustive description of water influence on the single parameters contributing to the gas permeation across the membrane. In the second part, the study has focused on the synthesis and characterization of facilitated transport membranes, able to achieving outstanding separation performances thanks to the chemical enhancement of CO2 permeability. In particular, the transport properties have been investigated for high pressure CO2 separation applications and specific solutions have been proposed to solve stability issues, frequently arising under such severe conditions. Finally, the effect of different process parameters have been investigated, aiming at the identification of the optimal conditions capable to maximize the separation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epoxies find variety of applications and during these applications they get exposed to different conditions like elevated temperatures, hydrothermal, chemical, etc. It has been observed that properties of epoxies do get affected substantially if exposed to these conditions for extended period of time and because of the variety of applications, researchers found it necessary to study their effects on the thermal, mechanical, physical and chemical properties. However in this report the focus is on studying effects of physical aging on mechanical properties of EPON 862 with DETDA as its curing agent, where physical aging is aging is the condition which occurs due to exposure to elevated temperatures. A fair amount of computational work has been performed on EPON 862- DETDA to study the effects of physical aging, however very little known work has been done experimentally to study these effects. Young’s modulus, hardness, failure strength, strain to failure, density and glass transition are the properties which have been obtained using various experimental methods - tensile testing, nanoindentation and differential scanning calorimetry. Experimental work on other epoxies have shown no increase or very slight increase in the Young’s modulus and hardness with increased aging time, also decrease in failure strength and strain to failure and through this work on EPON 862- DETDA we can observe similar trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential use of the solvothermal extraction (SE) as a preliminary step to calcination for detemplating SBA-15 mesophases is investigated; aiming to reduce the amount of organics to be burnt and thereby the corresponding structural shrinkage. A systematic study was carried out by soxhlet extraction on mesophases hydrothermally aged between 90 and 130 C. The mesophases containing variable amounts of template were then treated by calcination or pyrolysis/calcination. TGA was applied to quantify the template amount after the various treatments. The as obtained materials were characterized by SAXS and Ar ad/desorption for structural and textural information while 1H NMR gave information about the integrity of the as-recycled template. The study shows that solvothermal conditions remove considerably the template, typically from 50 to 10-20 wt.%, mainly extracted from the primary mesopores. Possible reuse of the extracted template is questionable as it is poor in polyethyleneoxide compared to the synthesis block-copolymer, Pluronic P123. For all thermal protocols applied (direct calcination, calcination after solvent-extraction or pyrolysis/calcination after solvent extraction), the thermal shrinkage decreases with the aging temperature; that is consistent with the condensation degree of the silica. For each mesophase, it was found that the thermal shrinkage becomes less pronounced when the material is fully templated; thus the template can serve as structural support or can control the mass transfer of O2 and thereby the oxidation rate of the template burning. © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.