874 resultados para Theory of Complex Socialization
Resumo:
2000 Mathematics Subject Classification: 34E20, 35L80, 35L15.
Resumo:
Bródy András kutatásainak egyik központi témaköre a gazdasági mozgás vizsgálata volt. Írásunkban Bródy elméletét kívánjuk röviden áttekinteni és összefoglalni. A termelés sokszektoros leírása egyben árelméletét (értékelméletét, méréselméletét) is keretbe foglalja. Ebben a keretben a gazdasági mozgás összetett ingadozása technológiai alapon elemezhető. Bródy megközelítésében a gazdasági ciklust nem külső megrázkódások magyarázzák, hanem a termelési rendszer belső arányai és kapcsolatai. A termelési struktúrát az árak és a volumenek egyformán alakítják, ezek között nincsen kitüntetett vagy domináns tényező. Az árak és a volumenek a köztük lévő duális kapcsolatban alakulnak ki. A gazdaság mozgásegyenleteit technológiai mérlegösszefüggések, valamint a piaci csere útján a gazdaságban újraelosztásra (újratermelésre) kerülő termékek felhasználása és az eszközlekötés változása írja le. Az így meghatározott mozgásegyenletek a gazdaság természetes mozgását ciklusmozgás alakjában írják le. A technológia vagy az értékviszonyok megváltozása (sokkok) a gazdaság ciklikus mozgásának megváltozásában tükröződik. Bródy munkáiban technológiai megalapozást nyer a történelemből ismert számos jellegzetes gazdasági ciklus. / === / Economic motion and dynamics are at the heart of Andras Brody's creative output. This paper attempts a bird's-eye view of his theory of economic cycles. Brody's multi-sector modelling of production has provided a framework for price theory (the theory of value and measurement). His theory of economic motion with cyclical characteristics is technology driven. It argues that the complex web of economic cycles is determined by the proportions and interrelationships of the system of production, not by arbitrary external shocks. The structure's behaviour are driven by prices and proportions, with the duality of prices and proportions as a dominant feature. These are features in common with the Leontief models, which Brody extended to economic cycles. Brody saw economic cycles as natural motions of economic systems with accumulated assets (time lags) and market exchange of goods (demand and supply adjustment). Changes in technology or valuations (shocks) are reflected in changing patterns of motion. His model of the economy is a fine instrument that enabled him to show how the technological parameters of its system determine the frequency and other characteristics of various economic cycles identified in economic history.
Resumo:
Other
Resumo:
Abstract. The performance objectives used for the formative assessment of com- plex skills are generally set through text-based analytic rubrics[1]. Moreover, video modeling examples are a widely applied method of observational learning, providing students with context-rich modeling examples of complex skills that act as an analogy for problem solving [1]. The purpose of this theoretical paper is to synthesize the components of video modeling and rubrics to support the formative assessment of complex skills. Based on theory, we argue that application of the developed Video Enhanced Rubrics (VER) fosters learners’ development of mental models, quality of provided feedback by various actors and finally, the learners mastery of complex skills.
Resumo:
The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.
Resumo:
This paper aims to investigate the ways in which context-based sonic art is capable of furthering a knowledge and understanding of place based on the initial perceptual encounter. How might this perceptual encounter operate in terms of a sound work’s affective dimension? To explore these issues I draw upon James J. Gibson’s ecological theory of perception and Gernot Böhme’s concept of an ‘aesthetic of atmospheres’. Within the ecological model of perception an individual can be regarded as a ‘perceptual system’: a mobile organism that seeks information from a coherent environment. I relate this concept to notions of the spatial address of environmental sound work in order to explore (a) how the human perceptual apparatus relates to the sonic environment in its mediated form and (b) how this impacts on individuals’ ability to experience such work as complex sonic ‘environments’. Can the ecological theory of perception aid the understanding of how the listener engages with context-based work? In proposing answers to this question, this paper advances a coherent analytical framework that may lead us to a more systematic grasp of the ways in which individuals engage aesthetically with sonic space and environment. I illustrate this methodology through an examination of some of the recorded work of sound artist Chris Watson.
Resumo:
We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.
Resumo:
University students are more globally mobile than ever before, increasingly receiving education outside of their home countries. One significant student exchange pattern is between China and the United States; Chinese students are the largest population of international students in the U.S. (Institute of International Education, 2014). Differences between Chinese and American culture in turn influence higher education praxis in both countries, and students are enculturated into the expectations and practices of their home countries. This implies significant changes for students who must navigate cultural differences, academic expectations, and social norms during the process of transition to a system of higher education outside their home country. Despite the trends in students’ global mobility and implications for international students’ transitions, scholarship about international students does not examine students’ experiences with the transition process to a new country and system of higher education. Related models were developed with American organizations and individuals, making it unlikely that they would be culturally transferable to Chinese international students’ transitions. This study used qualitative methods to deepen the understanding of Chinese international students’ transition processes. Grounded theory methods were used to invite the narratives of 18 Chinese international students at a large public American university, analyze the data, and build a theory that reflects Chinese international students’ experiences transitioning to American university life. Findings of the study show that Chinese international students experience a complex process of transition to study in the United States. Students’ pre-departure experiences, including previous exposure to American culture, family expectations, and language preparation, informed their transition. Upon arrival, students navigate resource seeking to fulfill their practical, emotional, social, intellectual, and ideological needs. As students experienced various positive and discouraging events, they developed responses to the pivotal moments. These behaviors formed patterns in which students sought familiarity or challenge subsequent to certain events. The findings and resulting theory provide a framework through which to better understand the experiences of Chinese international students in the context of American higher education.
Resumo:
As the universe of knowledge and subjects change over time, indexing languages like classification schemes, accommodate that change by restructuring. Restructuring indexing languages affects indexer and cataloguer work. Subjects may split or lump together. They may disappear only to reappear later. And new subjects may emerge that were assumed to be already present, but not clearly articulated (Miksa, 1998). In this context we have the complex relationship between the indexing language, the text being described, and the already described collection (Tennis, 2007). It is possible to imagine indexers placing a document into an outdated class, because it is the one they have already used for their collection. However, doing this erases the semantics in the present indexing language. Given this range of choice in the context of indexing language change, the question arises, what does this look like in practice? How often does this occur? Further, what does this phenomenon tell us about subjects in indexing languages? Does the practice we observe in the reaction to indexing language change provide us evidence of conceptual models of subjects and subject creation? If it is incomplete, but gets us close, what evidence do we still require?
Resumo:
In this study, the lubrication theory is used to model flow in geological fractures and analyse the compound effect of medium heterogeneity and complex fluid rheology. Such studies are warranted as the Newtonian rheology is adopted in most numerical models because of its ease of use, despite non-Newtonian fluids being ubiquitous in subsurface applications. Past studies on Newtonian and non-Newtonian flow in single rock fractures are summarized in Chapter 1. Chapter 2 presents analytical and semi-analytical conceptual models for flow of a shear-thinning fluid in rock fractures having a simplified geometry, providing a first insight on their permeability. in Chapter 3, a lubrication-based 2-D numerical model is first implemented to solve flow of an Ellis fluid in rough fractures; the finite-volumes model developed is more computationally effective than conducting full 3-D simulations, and introduces an acceptable approximation as long as the flow is laminar and the fracture walls relatively smooth. The compound effect of shear-thinning fluid nature and fracture heterogeneity promotes flow localization, which in turn affects the performance of industrial activities and remediation techniques. In Chapter 4, a Monte Carlo framework is adopted to produce multiple realizations of synthetic fractures, and analyze their ensemble statistics pertaining flow for a variety of real non-Newtonian fluids; the Newtonian case is used as a benchmark. In Chapter 5 and Chapter 6, a conceptual model of the hydro-mechanical aspects of backflow occurring in the last phase of hydraulic fracturing is proposed and experimentally validated, quantifying the effects of the relaxation induced by the flow.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Resumo:
It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-vanishing total fermionic charge.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.