852 resultados para Tetracycline hydrochloride
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO-driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.
Resumo:
This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap – high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the “dehydration ERY-A”, with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases
Resumo:
A flow-injection (FI) spectrophotometric procedure is proposed for tetracycline (TC) and doxycycline (DXC) determination in pharmaceuticals. The method is based on the reaction of oxidation of these drugs by chloramine-T in alkaline medium producing red color products (λmax = 535 and 525 nm). Beer´s law is obeyed in the concentration range from 6.62 x 10-5 to 7.72 x 10-4 mol L-1 and 5.37 x 10-5 to 7.16 x 10-4 mol L-1 for TC and DXC, respectively. The analytical frequency was 50 h"1 and 45 h-1 for TC and DXC, respectively. The results obtained by the proposed method were in good agreement with those obtained by the official method at 95% confidence level.
Resumo:
This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.
Resumo:
A method using liquid chromatography has been developed and validated for determination of buclizine in pharmaceutical formulations and in release studies. Isocratic chromatography was performed on a C18 column with methanol:water (80:20 v/v, pH 2.6) as mobile phase, at a flow rate of 1.0 mL/min, and UV detection at 230 nm. The method was linear, accurate, precise, sensible and robust. The dissolution test was optimized and validated in terms of dissolution medium, apparatus agitation and rotation speed. The presented analytical and dissolution procedures can be conveniently adopted in the quality and stability control of buclizine in tablets and oral suspension.
Resumo:
A simple, RP-HPLC method was established for determining moxifloxacin and ketorolac in pharmaceutical formulations. Moxifloxacin, ketorolac and their degradation products were separated using C8 column with methanol and phosphate buffer pH 3.0 (55:45 v/v) as the mobile phase. Detection was performed at 243 nm using a diode array detector. The method was validated using ICH guidelines and was linear in the range 20-140 µg mL-1 for both analytes. Good separation of both the analytes and their degradation products was achieved using this method. The developed method can be applied successfully for the determination of moxifloxacin and ketorolac.
Resumo:
The inhibition of the corrosion of mild steel in 2M hydrochloric acid solutions by Pyridoxol hydrochloride (PXO) has been studied using weight loss and hydrogen evolution techniques. The inhibitor (PXO) exhibited highest inhibition efficiency of 71.93% at the highest inhibitor concentration of 1.0 x 10-2M investigated and a temperature of 303K from weight loss result. Also, inhibition was found to increase with increasing concentration of the inhibitor and decreasing temperature. A first order type of mechanism has been deduced from the kinetic treatment of the weight loss results and the process of inhibition attributed to physical adsorption. The results obtained from the two techniques show that pyridoxol hydrochloride could serve as an effective inhibitor of the corrosion of mild steel in HCl acid solution. The compound obeys the Langmuir adsorption isotherm equation.
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Two simple, rapid and accurate methods for the determination of bupropion hydrochloride (BUP) in pure and in pharmaceutical preparations are described. Both methods are based on the measurement of the chloride of its hydrochloride. In the titrimetric method, the chloride content of bupropion hydrochloride is determined by titrating with mercury(II)nitrate using diphenylcarbazone-bromophenol blue as indicator. Titrimetric method is applicable over a range 2-20 mg of BUP and the reaction stoichiometry is found to be 2:1 (BUP: Hg(NO3)2). The spectrophotometric method involves the addition of a measured excess of mercury(II) nitrate reagent in formate buffer to the drug, and after ensuring the reaction had gone to completion, the unreacted mercury(II) is treated with a fixed amount of diphenylcarbazone, and absorbance measured at 515 nm. The absorbance is found to decrease linearly with increasing concentration of BUP and the calibration curve is linear over 1.0-15.0 µg mL-1 BUP. The proposed methods were successfully applied to the determination of BUP in commercially available dosage forms with good accuracy and precision, and without detectable interference by excipients. The accuracy was further ascertained by placebo blank and synthetic mixture analyses and also by recovery experiments via standard-addition procedure.
Resumo:
A new spectrophotometric method is proposed for the assay of ranitidine hydrochloride (RNH) in bulk drug and in its dosage forms using ceric ammonium sulphate (CAS) and two dyes, malachite (MAG) green and crystal violet (CV) as reagents. The method involves the addition of a known excess of ceric ammonium sulphate to ranitidine hydrochloride in acid medium, followed by the determination of unreacted CAS by reacting with a fixed amount of malachite green or crystal violet and measuring the absorbance at 615 or 582 nm respectively against the reagent blank. The Beer's law is obeyed in the concentration range of 0.4-8.0 µg/ ml of ranitidine hydrochloride (RNH) for RNH-MAG system and 0.2-1.6µg/ml of ranitidine hydrochloride for RNH-CV system. The molar Absorptivity, Sandell's sensitivity for each system were calculated. The method has been successfully applied to the determination of ranitidine hydrochloride in pure and dosage forms.
Resumo:
The combination of two low-cost classical procedures based on titrimetric techniques is presented for the determination of pyridoxine hydrochloride in pharmaceuticals samples. Initially some experiments were carried out aiming to determine both pKa1 and pKa2 values, being those compared to values of literature and theoretical procedures. Commercial samples containing pyridoxine hydrochloride were electrochemically analysed by exploiting their acid-base and precipitation reactions. Potentiometric titrations accomplished the reaction between the ionizable hydrogens present in pyridoxine hydrochloride, being NaOH used as titrant; while the conductimetric method was based on the chemical precipitation between the chloride of pyridoxine hydrochloride molecule and Ag+ ions from de silver nitrate, changing the conductivity of the solution. Both methods were applied to the same commercial samples leading to concordant results when compared by statistical tests (95 and 98% confidence levels). Recoveries ranging from 99.0 to 108.1% were observed, showing no significant interference on the results.
Resumo:
A simple, rapid, accurate and inexpensive spectrophotometric method for the determination of tetracycline and doxycycline has been developed. The method is based on the reaction between these drugs and chloramine-T in alkaline medium producing red color products with absorbance maximum at the Λ = 535 and 525 nm for the tetracycline and doxycycline, respectively. The best conditions for the reactions have been found using multivariate method. Beer´s law is obeyed in a concentration ranges 1.03 x 10-5 to 3.61 x 10-4 mol L-1 and 1.75 x 10-5 to 3.48 x 10-4 mol L-1 for the tetracycline and doxycycline, respectively. The quantification limits were 5.63 x 10-6 mol L-1 and 7.12 x 10-7 mol L-1 for the tetracycline and doxycycline, respectively. The proposed method was successfully applied to the determination of these drugs in pharmaceutical formulations and the results obtained were in good agreement with those obtained by the comparative method at the 95% confidence level.
Resumo:
In this paper the conductometric titration of propranolol hydrochloride in pharmaceutical formulations using silver nitrate as titrant is proposed. The method was based on the formation of an insoluble salt (AgCl(s)) between the chloride of propranolol hydrochloride molecule and Ag(I) ions of the titrant AgNO3. The effect of the PROP-AgNO3 concentrations and the interval of time between the successive additions of the titrant on the shape of the titration curve were studied. The obtained recoveries for four samples ranged from 96.8 to 105%. The proposed method was successfully applied in the determination of propranolol hydrochloride in several pharmaceutical formulations, with results in close agreement at a 95 % confidence level with those obtained using official spectrophotometric method.
Resumo:
Abstract The study was carried out to screen and analyze the genetic characteristics of antimicrobial resistance in Campylobacter spp. from poultry sources. A total of 141 strains of Campylobacter isolated from samples of broilers of slaughterhouses in southern Brazil was identified by phenotypic and genotypic methods. Campylobacter isolates were evaluated for its antimicrobial susceptibility and the presence of resistance genes. The strains were investigated for antimicrobial susceptibility against two agents (ampicillin and tetracycline) by disk diffusion method. PCR assay was used to confirm the specie and the presence of ampicillin (blaOXA-61), tetracycline tet(O), and the energy-dependent multi-drug efflux pump (cmeB) genes. Campylobacter jejuni was the most ubiquitous; its presence was determined in 140 samples out of 141 (99.3%), whereas Campylobacter coli was found only in one of the contaminated samples (0.70%). The results obtained showed 65% and 35.5% of Campylobacter isolates resistant to β-lactams and tetracyclines, respectively. The cmeB gene responsible for multidrug resistance was detected in 26 isolates out 141 strains (18.5%). Moreover, 36 out of 141 Campylobacter strains (25.6%) were found to be resistant to at least two different antimicrobia resistance markers (β-lactams and tetracyclines).