973 resultados para Teorema Egregium de Gauss


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XII Jornadas de Investigaci??n en el Aula de Matem??ticas : estad??stica y azar, celebradas en Granada, noviembre y diciembre de 2006. Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XII Jornadas de Investigación en el Aula de Matemáticas : estadística y azar, celebradas en Granada, noviembre y diciembre de 2006. Resumen tomado de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se estudia la teoría de grafos en relación con el teorema de Euler. La teoría de grafos se refiere a la teoría de conjuntos relativa a las relaciones binarias de un conjunto numerable consigo mismo. Esta teoría posee un vasto campo de aplicaciones en Física, Economía, Teoría de la Información, Programación Lineal, Transportas, Psicología, e incluso en ciertos dominios del arte. Se pretende realizar un trabajo que sirva como seminario optativo para los alumnos de COU, que presente a los alumnos un teorema clásico de geometría mediante la teoría de grafos, un aspecto bastante olvidado en los programas. Se utilizan los métodos y el lenguaje de la teoría de grafos para demostrar el teorema de Euler, que liga caras, vértices y aristas de un poliedro regular. Para todo ello en primer lugar se sistematizan una serie de conceptos previos, se analizan las propiedades de distintos tipos de grafos, y por último, se realizan demostraciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study and present a complete classification of spacelike surfaces with degenerate Gauss map in the Lorentz-Minkowski space L(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, fazendo uso da teoria das equações, iremos cotejar a aplicação de dois métodos clássicos de separação de raízes. Tais métodos, especializados para a "separação" das taxas internas de retorno de um projeto, são superiores às condições de suficiência pois que permitem a determinação do número exato de taxas internas de retorno associadas a um projeto, no intervalo de taxas de juros considerado.