50 resultados para Teide
Resumo:
The current paper is an excerpt from the doctoral thesis ”Multi-Layer Insulation as Contribution to Orbital Debris”written at the Institute of Aerospace Systems of the Technische Universit ̈at of Braunschweig. The Multi-Layer In-sulation (MLI) population included in ESA’s MASTER-2009 (M eteoroid and Space-Debris Terrestrial Environment Reference) software is based on models for two mechanisms: One model simulates the release of MLI debris during fragmentation events while another estimates the continuo us release of larger MLI pieces due to aging related deterioration of the material. The aim of the thesis was to revise the MLI models from the base up followed by a re-validation of the simulated MLI debris population. The validation is based on comparison to measurement data of the GEO and GTO debris environment obtained by the Astronomical Institute of the University of Bern (AIUB) using ESA’s Space Debris Telescope (ESASDT), the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. The re-validation led to the conclusion that MLI may cover a much smaller portion of the observed objects than previously published. Further investigation of the resulting discrepancy revealed that the contribution of altogether nine known Ariane H-10 upper stage explosion events which occurred between 1984 and 2002 has very likely been underestimated in past simulations.
Resumo:
This work presents results for the three-dimensional displacement field at Tenerife Island calculated from campaign GPS and ascending and descending ENVISAT DInSAR interferograms. The goal of this work is to provide an example of the flexibility of the technique by fusing together new varieties of geodetic data, and to observe surface deformations and study precursors of potential activity in volcanic regions. Interferometric processing of ENVISAT data was performed with GAMMA software. All possible combinations were used to create interferograms and then stacking was used to increase signal-to-noise ratio. Decorrelated areas were widely observed, particularly for interferograms with large perpendicular baseline and large time span. Tropospheric signal was also observed which significantly complicated the interpretation. Subsidence signal was observed in the NW part of the island and around Mount Teide and agreed in some regions with campaign GPS data. It is expected that the technique will provide better results when more high quality DInSAR and GPS data is available
Resumo:
The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide?Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011?2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.
Resumo:
MTSD 0377.
Resumo:
El periplo de Hannón, frente a las propuestas que lo interpretan como una obra literaria, creemos que recoge un periplo auténtico, que sólo alcanzó cabo Juby y algunas de las Islas Canarias. Las refundaciones cartaginesas fueron todas en la Mauretania fértil, en los 7 primeros días de la expedición. Desde el islote de Kérne, en la expedición primó una primera exploración de evaluación, indicativo de que se trataba de apenas 2 o 3 barcos, con una tripulación limitada, que evitaban enfrentamientos con la población local. Los intérpretes Lixítai parecen conocer todos los puntos explorados, el río Chrétes, los etíopes del Alto Atlas costero, el gran golfo caluroso que finalizaba en el Hespérou Kéras, el volcán Theôn Óchema, o las gentes salvajes que denominaban Goríllai. Probablemente la mayor sorpresa fuese encontrar un volcán activo, emitiendo lava, que pudo ser la razón última para redactar este periplo. La falta de agua, alimentos y caza como razón para finalizar la expedición exploratoria sólo es comprensible en un trayecto corto que alcanzó hasta el inicio del desierto del Sahara. Otro tanto sucede con la ausencia de ríos importantes al Sur del río Chrétes, una clara prueba de que no se alcanzaron latitudes ecuatoriales y que los barcos se fueron alejando de la costa norteafricana.