413 resultados para TROPOSPHERE
Resumo:
The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.
Resumo:
Nitrogen oxides play a crucial role in the budget of tropospheric ozone (O sub(3)) and the formation of the hydroxyl radical. Anthropogenic activities and boreal wildfires are large sources of emissions in the atmosphere. However, the influence of the transport of these emissions on nitrogen oxides and O sub(3) levels at hemispheric scales is not well understood, in particular due to a lack of nitrogen oxides measurements in remote regions. In order to address these deficiencies, measurements of NO, NO sub(2) and NO sub(y) (total reactive nitrogen oxides) were made in the lower free troposphere (FT) over the central North Atlantic region (Pico Mountain station, 38 degree N 28 degree W, 2.3 km asl) from July 2002 to August 2005. These measurements reveal a well-defined seasonal cycle of nitrogen oxides (NO sub(x) = NO+NO sub(2) and NO sub(y)) in the background central North Atlantic lower FT, with higher mixing ratios during the summertime. Observed NO sub(x) and NO sub(y) levels are consistent with long-range transport of emissions, but with significant removal en-route to the measurement site. Reactive nitrogen largely exists in the form of PAN and HNO sub(3) ( similar to 80-90% of NO sub(y)) all year round. A shift in the composition of NO sub(y) from dominance of PAN to dominance of HNO sub(3) occurs from winter-spring to summer-fall, as a result of changes in temperature and photochemistry over the region. Analysis of the long-range transport of boreal wildfire emissions on nitrogen oxides provides evidence of the very large-scale impacts of boreal wildfires on the tropospheric NO sub(x) and O sub(3) budgets. Boreal wildfire emissions are responsible for significant shifts in the nitrogen oxides distributions toward higher levels during the summer, with medians of NO sub(y) (117-175 pptv) and NO sub(x) (9-30 pptv) greater in the presence of boreal wildfire emissions. Extreme levels of NO sub(x) (up to 150 pptv) and NO sub(y) (up to 1100 pptv) observed in boreal wildfire plumes suggest that decomposition of PAN to NO sub(x) is a significant source of NO sub(x), and imply that O sub(3) formation occurs during transport. Ozone levels are also significantly enhanced in boreal wildfire plumes. However, a complex behavior of O sub(3) is observed in the plumes, which varies from significant to lower O sub(3) production to O sub(3) destruction. Long-range transport of anthropogenic emissions from North America also has a significant influence on the regional NO sub(x) and O sub(3) budgets. Transport of pollution from North America causes significant enhancements on nitrogen oxides year-round. Enhancements of CO, NO sub(y) and NO sub(x) indicate that, consistent with previous studies, more than 95% of the NO sub(x) emitted over the U.S. is removed before and during export out of the U.S. boundary layer. However, about 30% of the NO sub(x) emissions exported out of the U.S. boundary layer remain in the airmasses. Since the lifetime of NO sub(x) is shorter than the transport timescale, PAN decomposition and potentially photolysis of HNO sub(3) provide a supply of NO sub(x) over the central North Atlantic lower FT. Observed Delta O sub(3)/ Delta NO sub(y) and large NO sub(y) levels remaining in the North American plumes suggest potential O sub(3) formation well downwind from North America. Finally, a comparison of the nitrogen oxides measurements with results from the global chemical transport (GCT) model GEOS-Chem identifies differences between the observations and the model. GEOS-Chem reproduces the seasonal variation of nitrogen oxides over the central North Atlantic lower FT, but does not capture the magnitude of the cycles. Improvements in our understanding of nitrogen oxides chemistry in the remote FT and emission sources are necessary for the current GCT models to adequately estimate the impacts of emissions on tropospheric NO sub(x) and the resulting impacts on the O sub(3) budget.
Resumo:
In this study two commonly used automated methods to detect atmospheric fronts in the lower troposphere are compared in various synoptic situations. The first method is a thermal approach, relying on the gradient of equivalent potential temperature (TH), while the second method is based on temporal changes in the 10 m wind (WND). For a comprehensive objective comparison of the outputs of these methods of frontal identification, both schemes are firstly applied to an idealised strong baroclinic wave simulation in the absence of topography. Then, two case-studies (one in the Northern Hemisphere (NH) and one in the Southern Hemisphere (SH)) were conducted to contrast fronts detected by the methods. Finally, we obtain global winter and summer frontal occurrence climatologies (derived from ERA-Interim for 1979–2012) and compare the structure of these. TH is able to identify cold and warm fronts in strong baroclinic cases that are in good agreement with manual analyses. WND is particularly suited for the detection of strongly elongated, meridionally oriented moving fronts, but has very limited ability to identify zonally oriented warm fronts. We note that the areas of the main TH frontal activity are shifted equatorwards compared to the WND patterns and are located upstream of regions of main WND front activity. The number of WND fronts in the NH shows more interseasonal variations than TH fronts, decreasing by more than 50% from winter to summer. In the SH there is a weaker seasonal variation of the number of observed WND fronts, however TH front activity reduces from summer (DJF) to winter (JJA). The main motivation is to give an overview of the performance of these methods, such that researchers can choose the appropriate one for their particular interest.
Resumo:
One main point of the air electric investigations at the atlantic 1965 and 1969 was the record of the potential gradient in the troposphere with free and captive balloon ascents. The course of the field vs. altitude above the sea differs from that over land. A remarkable enlargement of the field strength occurs at the altitude of the passat inversion. The electric voltage between ionosphere and earth could be obtained by integrating the potential gradient over the altitude. Such computations have been made by balloon ascents simultaneous over the ocean and at Weissenau (South Germany), From 15 simultaneous measurements the average value of the potential of the ionosphere over the ocean is 214 kV and over South Germany 216 kV, that means very close together. Because of the small differences also between the single values it can be concluded that in generally the ionosphere potential has an equal value over these both places at one moment. From the potential of the ionosphere VI, the field strength E0 and the conductivity lamda o, both measured at the sea surface, the columnar resistance R could be derived to 2.4 x 10**17 Ohm x m**2. By correlation of the single values of the ionosphere potential with the potential gradient measured simultaneously at the surface of the sea a linear proportional relationship exists; it follows from this result, that R is nearly constant. The mean value of the air-earth current density over the ocean could be calculated by using the measured values of the small ion density with respect to the electrode effect prooved at the equator station. The current density was only 0.9 x 10**-12 A/m**2, which means, a three and a half times smaller value than estimated by Carnegie and accepted up to now. Therefore it seems to be necessary to correct the former calculations of the global current balance.
Resumo:
"Report no. FAA-EE-80-06."
Resumo:
Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.
Resumo:
Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.
Resumo:
Carbon Monoxide (CO) and Ozone (O3) are considered to be one of the most important atmospheric pollutants in the troposphere with both having significant effects on human health. Both are included in the U.S. E.P.A list of criteria pollutants. CO is primarily emitted in the source region whereas O3 can be formed near the source, during transport of the pollution plumes containing O3 precursors or in a receptor region as the plumes subside. The long chemical lifetimes of both CO and O3 enable them to be transported over long distances. This transport is important on continental scales as well, commonly referred to as inter-continental transport and affects the concentrations of both CO and O3 in downwind receptor regions, thereby having significant implications for their air quality standards. Over the period 2001-2011, there have been decreases in the anthropogenic emissions of CO and NOx in North America and Europe whereas the emissions over Asia have increased. How these emission trends have affected concentrations at remote sites located downwind of these continents is an important question. The PICO-NARE observatory located on the Pico Mountain in Azores, Portugal is frequently impacted by North American pollution outflow (both anthropogenic and biomass burning) and is a unique site to investigate long range transport from North America. This study uses in-situ observations of CO and O3 for the period 2001-2011 at PICO-NARE coupled with output from the full chemistry (with normal and fixed anthropogenic emissions) and tagged CO simulations in GEOS-Chem, a global 3-D chemical transport model of atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office, to determine and interpret the trends in CO and O3 concentrations over the past decade. These trends would be useful in ascertaining the impacts emission reductions in the United States have had over Pico and in general over the North Atlantic. A regression model with sinusoidal functions and a linear trend term was fit to the in-situ observations and the GEOS-Chem output for CO and O3 at Pico respectively. The regression model yielded decreasing trends for CO and O3 with the observations (-0.314 ppbv/year & -0.208 ppbv/year respectively) and the full chemistry simulation with normal emissions (-0.343 ppbv/year & -0.526 ppbv/year respectively). Based on analysis of the results from the full chemistry simulation with fixed anthropogenic emissions and the tagged CO simulation it was concluded that the decreasing trends in CO were a consequence of the anthropogenic emission changes in regions such as USA and Asia. The emission reductions in USA are countered by Asian increases but the former have a greater impact resulting in decreasing trends for CO at PICO-NARE. For O3 however, it is the increase in water vapor content (which increases O3 destruction) along the pathways of transport from North America to PICO-NARE as well as around the site that has resulted in decreasing trends over this period. This decrease is offset by increase in O3 concentrations due to anthropogenic influence which could be due to increasing Asian emissions of O3 precursors as these emissions have decreased over the US. However, the anthropogenic influence does not change the final direction of the trend. It can thus be concluded that CO and O3 concentrations at PICO-NARE have decreased over 2001-2011.
Resumo:
Na primeira semana de maio de 2008, durante quatro dias, um ciclone em superfície permaneceu semi-estacionário na costa da região sul do Brasil. Este sistema foi responsável por chuvas e ventos fortes no Rio Grande do Sul e Santa Catarina, os quais causaram muitos danos (queda de árvores, enchentes e desabamentos). O objetivo deste trabalho é avaliar o processo de formação e entender os mecanismos responsáveis pelo lento deslocamento do ciclone, já que a maioria dos ciclones nesta região possui deslocamento mais rápido. A equação de desenvolvimento de Sutcliffe mostrou que a advecção de vorticidade absoluta ciclônica na média troposfera e a advecção de ar quente na camada entre 1000-500 hPa foram mecanismos importantes para a ciclogênese. Neste período, o intenso aquecimento diabático também contribuiu para a ciclogênese, à medida que se contrapôs ao intenso resfriamento adiabático devido aos movimentos verticais ascendentes. A advecção de vorticidade absoluta ciclônica que favoreceu a ciclogênese esteve associada a um Vórtice Ciclônico em Altos Níveis (VCAN), que se formou numa região de anomalia de vorticidade potencial. O VCAN se manteve semi-estacionário e compôs o setor norte de um bloqueio do tipo dipolo. Tal bloqueio intensificou um anticiclone em superfície, situado a sul/leste do ciclone, o que contribuiu para o ciclone se manter semi-estacionário. O movimento atípico e lento do ciclone para sul, e em alguns períodos para sudoeste, esteve associado com advecções de vorticidade absoluta ciclônica na média troposfera e de ar quente no seu setor sul. Somente quando o bloqueio em níveis médios e a anomalia de vorticidade potencial em níveis médios/altos se enfraqueceram, o ciclone em superfície se afastou da costa sul do Brasil.