972 resultados para TISSUE GROWTH-FACTOR
Resumo:
Fibroblast growth factor receptors (FGFRs) undergo highly regulated spatial and temporal changes of expression during development. This study describes the use of quantitative reverse transcriptase-polymerase chain reaction and immunochemistry to assess the changes in expression of FGFR4 as compared to its FGFR4-17a and -17b isoforms in mouse tissues, from early embryogenesis through to adulthood. Compared to FGFR4, the expression of the isoforms is more restricted at all developmental stages tested. The reverse transcriptase-polymerase chain reaction demonstrated that FGFR4 is expressed in more tissue types than either of its isoforms: it was found predominantly in lung, liver, brain, skeletal muscle and kidney, whereas the FGFR4-17a form was detected in lung and skeletal muscle, and the FGFR4-17b form only in lung, liver, skeletal muscle and kidney. Immunohistochemistry confirmed strong FGFR4-17b expression in the postnatal lung. When combined, the results suggest that FGFR4 variants play important roles particularly in lung and skeletal muscle development.
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
Part of the results of this thesis was presented in the following meetings: Susana Ponte, Lara Carvalho, Inês Cristo and António Jacinto. The role of Grainy head in epithelial tissue growth. Drostuga 2013. Faro, Portugal, January 3rd 2014 [poster] Susana Ponte, Lara Carvalho, Inês Cristo and António Jacinto. The role of Grainy head in epithelial tissue growth. Drostuga 2014. Tomar, Portugal, September 5th-6th 2014 [poster]
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.
Resumo:
It has been demonstrated that parotid glands of rats infected with Trypanosoma cruzi present severe histological alterations; changes include reduction in density and volume of the acini and duct systems and an increase in connective tissue. We evaluated the association between morphological changes in parotid glands, circulating testosterone levels and epidermal growth factor receptor (EGF-R) expression in experimental Chagas disease in rats. Animals at 18 days of infection (acute phase) showed a significant decrease in body weight, serum testosterone levels and EGF-R expression in the parotid gland compared with a control group. Since decreases in body weight could lead to a reduction in circulating testosterone concentration, we believe that the reduction in EGF-R expression in parotid glands of infected rats is due to alterations in testosterone levels and atrophy of parotid glands is caused by changes in EGF-R expression. Additionally, at 50 days (chronic phase) of infection parotid glands showed a normal histological aspect likely due to the normalization of the body weight. These findings suggest that the testosterone-EGF-R axis is involved in the histological changes.
Resumo:
Undernourished mice infected (UI) submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation) and host (growth curves, biology, collagen synthesis and characteristics of the immunological response) were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF)-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.
Resumo:
Objective: To analyze the vascularization of the endometrium via hysteroscopy and to assess its correlation with angiogenic factor gene expression and embryo implantation rate.Design: Cross-sectional study.Setting: Public university hospital.Patient(s): Patients undergoing hysteroscopy for supposed infertility.Intervention(s): Endometrial quality assessment according to Sakumoto-Masamoto, performed in the early secretory phase of the cycle. Collection of an endometrial tissue biopsy.Main Outcome Measure(s): RNA extraction, reverse transcription, and determination of gene expression of angiogenesis- and implantation-relevant factors using quantitative polymerase chain reaction. Retrieval of pregnancy information from the medical records.Result(s): Good quantity/quality RNA with infertility history was obtained from 63 participating women. Those with a "good" endometrium and subsequent pregnancy showed increased gene expression for placenta growth factor when compared with patients with a "bad" endometrium and who did not succeed with pregnancy to date. Nonpregnant women with a "good" endometrium presented an intermediate result. No significant differences were observed for several other genes tested, but trends in the same direction were observed.Conclusion(s): This study demonstrates for the first time that endometrial PLGF expression corresponds to the hysteroscopic appearance of the endometrium, and therefore has potential as a clinically relevant prognosticator for infertility treatment success. (Fertil Steril (R) 2011;96:663-8. (C)2011 by American Society for Reproductive Medicine.)
Resumo:
Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.
Resumo:
Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.
Resumo:
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Resumo:
The actions of fibroblast growth factors (FGFs), particularly the basic form (bFGF), have been described in a large number of cells and include mitogenicity, angiogenicity and wound repair. The present review discusses the presence of the bFGF protein and messenger RNA as well as the presence of the FGF receptor messenger RNA in the rodent brain by means of semiquantitative radioactive in situ hybridization in combination with immunohistochemistry. Chemical and mechanical injuries to the brain trigger a reduction in neurotransmitter synthesis and neuronal death which are accompanied by astroglial reaction. The altered synthesis of bFGF following brain lesions or stimulation was analyzed. Lesions of the central nervous system trigger bFGF gene expression by neurons and/or activated astrocytes, depending on the type of lesion and time post-manipulation. The changes in bFGF messenger RNA are frequently accompanied by a subsequent increase of bFGF immunoreactivity in astrocytes in the lesioned pathway. The reactive astrocytes and injured neurons synthesize increased amount of bFGF, which may act as a paracrine/autocrine factor, protecting neurons from death and also stimulating neuronal plasticity and tissue repair
Resumo:
The objective of this study was to determine the effects of GDF-9, IGF-I, and GH alone or combined on preantral follicle survival, activation and development after 1 and 7 days of in vitro culture. Either fresh (non-cultured) or cultured ovarian tissue was processed for histological and fluorescence analysis. For all media tested, the percent of normal follicles was greater when compared to minimum essential medium supplemented (MEM+) alone, except when ovarian tissue was cultured with GDF-9/IGF-I or GDF-9/GH (P < 0.05). Fluorescence analysis showed that the percent of viable follicles after 7 days of culture was similar for non-cultured tissue and for all treatments tested. The percent of primordial follicles was reduced (P < 0.05) and there was a significant and concomitant increase in the percent of intermediate and primary follicles in all treatments tested after 7 days of culture when compared to non-cultured tissue. After 7 days of culture, the highest percent of intermediate follicles was observed with IGF-I/GH (61.3%), and the highest percent of primary follicles was achieved with IGF-I (57.7%). After 7 days of culture in MEM+ containing GDF-9, IGF-I and GH alone or in all associations, a significant increase in follicular diameter was observed when compared to MEM+ alone and non-cultured tissue. In conclusion, GDF-9, IGF-I and GH alone or in combination maintain preantral follicle survival and promote primordial follicle activation. Nevertheless, the data showed that IGF-I/GH and IGF-I alone are efficient in promoting the transition from primordial to intermediate follicles and from intermediate to primary follicles, respectively.