942 resultados para Suprachiasmatic Nucleus


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2)), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 +/- 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 +/- 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 -[phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 +/- 0.03 h) and a long-period component (23.93 +/- 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 +/- 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Besides the master clock located in the suprachiasmatic nucleus (SCN) of the brain, additional clocks are distributed across the central nervous system and the body. The role of these 'secondary' clocks remains unclear. A new study shows that the lack of an internal clock in histamine neurons profoundly perturbs sleep.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mid-winter development of refractoriness to melatonin (Mel) triggers recrudescence of the atrophied reproductive apparatus of rodents. As a consequence, over-wintering animals become reproductively competent just before the onset of spring conditions favorable for breeding. The neural target tissues that cease to respond to winter Mel signals have not been identified. We now report that the suprachiasmatic nucleus of the hypothalamus, which contains the principal circadian clock, and the reuniens and paraventricular nuclei of the thalamus, each independently becomes refractory to melatonin. Small implants of Mel that were left in place for 40 wk and that act locally on these brain nuclei, induced testicular regression within 6 wk in male Siberian hamsters; 12 wk later Mel implants no longer suppressed reproduction and gonadal recrudescence ensued. Hamsters that were then given a systemic Mel infusion s.c. immediately initiated a second gonadal regression, implying that neurons at each site become refractory to Mel without compromising responsiveness of other Mel target tissues. Refractoriness occurs locally and independently at each neural target tissue, rather than in a separate “refractoriness” substrate. Restricted, target-specific actions of Mel are consistent with the independent regulation by day length of the several behavioral and physiological traits that vary seasonally in mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circadian timing system (CTS), in rodents, consists of interconnected neural structures such as the suprachiasmatic nucleus (SCN) of the hypothalamus, Intergeniculate Leaflet (IGL) of the thalamus, synchronous pathways and behavioral effectors. The SCN has been described as the major circadian pacemaker in several species of mammals, while the IGL appears to be involved in integration of photic and non-photic clues relaying them to SCN. The CTS allows an ordered internal temporal organization to the organism, providing the proper execution of physiological and behavioral mechanisms, which brings homeostasis. However, this stability is disrupted with aging process causing numerous pathological disorders, ranging from simple loss of physiological functions to decreases in cognitive performance. Therefore, is fundamental understanding the effects of senescence in this system. In this context, is proposed in this study to check if there are changes in IGL cytoarchitecture, neurochemical and retinal afferent markers with aging and their possible morpho-functional implications. To achieve this goal wistar rats were divided into 3 groups: young (3 months); Middle Age (13 months); Old (23 months). They were submitted to paraformaldhyde (4%) transcardiac perfusion to tissue fixation. Then, they had their brain removed and sectioned in 30 µm slices, which every sixth section were collected. This sections were processed by nissl method and immunostaining for GFAP, GAD, ENK, NPY and CTb in order to analyze the IGL features. It was observed a cell loss in middle age and old animals at Nissl, NPY and CTb stains. In addition, it was shown a increase in GFAP in middle aged animals compared to young and old ones. No differences were found in other neurochemichal stains. These data suggests IGL loss retinal afferents and neurons, in special the NPY-IR ones, likely having a compensatory gliogenesis. This supports the correlations between the CTS functional deficits and an anatomical deterioration of its components with the aging process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this dissertation, there are developed different analytical strategies to discover and characterize mammalian brain peptides using small amount of tissues. The magnocellular neurons of rat supraoptic nucleus in tissue and cell culture served as the main model to study neuropeptides, in addition to hippocampal neurons and mouse embryonic pituitaries. The neuropeptidomcis studies described here use different extraction methods on tissue or cell culture combined with mass spectrometry (MS) techniques, matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). These strategies lead to the identification of multiple peptides from the rat/mouse brain in tissue and cell cultures, including novel compounds One of the goals in this dissertation was to optimize sample preparations on samples isolated from well-defined brain regions for mass spectrometric analysis. Here, the neuropeptidomics study of the SON resulted in the identification of 85 peptides, including 20 unique peptides from known prohormones. This study includes mass spectrometric analysis even from individually isolated magnocellular neuroendocrine cells, where vasopressin and several other peptides are detected. At the same time, it was shown that the same approach could be applied to analyze peptides isolated from a similar hypothalamic region, the suprachiasmatic nucleus (SCN). Although there were some overlaps regarding the detection of the peptides in the two brain nuclei, different peptides were detected specific to each nucleus. Among other peptides, provasopressin fragments were specifically detected in the SON while angiotensin I, somatostatin-14, neurokinin B, galanin, and vasoactive-intestinal peptide (VIP) were detected in the SCN only. Lists of peptides were generated from both brain regions for comparison of the peptidome of SON and SCN nuclei. Moving from analysis of magnocellular neurons in tissue to cell culture, the direct peptidomics of the magnocellular and hippocampal neurons led to the detection of 10 peaks that were assigned to previously characterized peptides and 17 peaks that remain unassigned. Peptides from the vasopressin prohormone and secretogranin-2 are attributed to magnocellular neurons, whereas neurokinin A, peptide J, and neurokinin B are attributed to cultured hippocampal neurons. This approach enabled the elucidation of cell-specific prohormone processing and the discovery of cell-cell signaling peptides. The peptides with roles in the development of the pituitary were analyzed using transgenic mice. Hes1 KO is a genetically modified mouse that lives only e18.5 (embryonic days). Anterior pituitaries of Hes1 null mice exhibit hypoplasia due to increased cell death and reduced proliferation and in the intermediate lobe, the cells differentiate abnormally into somatotropes instead of melanotropes. These previous findings demonstrate that Hes1 has multiple roles in pituitary development, cell differentiation, and cell fate. AVP was detected in all samples. Interestingly, somatostatin [92-100] and provasopressin [151-168] were detected in the mutant but not in the wild type or heterozygous pituitaries while somatostatin-14 was detected only in the heterozygous pituitary. In addition, the putative peptide corresponding to m/z 1330.2 and POMC [205-222] are detected in the mutant and heterozygous pituitaries, but not in the wild type. These results indicate that Hes1 influences the processing of different prohormones having possible roles during development and opens new directions for further developmental studies. This research demonstrates the robust capabilities of MS, which ensures the unbiased direct analysis of peptides extracted from complex biological systems and allows addressing important questions to understand cell-cell signaling in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melatonin, an endocrine product of the pineal gland, is formed predominantly during the nighttime. Light has an inhibitory effect on pineal melatonin secretion. Pineal melatonin release is synchronised by this daily light-dark cycle via a multisynaptic pathway between the eyes and the pineal gland. Light stimulates the retina to modulate the activity of the suprachiasmatic nucleus, the master biological clock.1 The suprachiasmatic nucleus controls pineal melatonin synthesis and the concentrations of melatonin in the sera of healthy subjects, which reach values of 10−10 to 10−9 mol/L during the night, with much lower concentrations being present during the day. Many publications have shown that melatonin has an important role in a variety of cardiovascular pathophysiologic processes: the indoleamine has anti-inflammatory, antioxidant, antihypertensive, antithrombotic and antilipaemic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total cross sections for neutron scattering from nuclei, with energies ranging from 10 to 600 MeV and from many nuclei spanning the mass range 6Li to 238U, have been analyzed using a simple, three-parameter, functional form. The calculated cross sections are compared with results obtained by using microscopic (g-folding) optical potentials as well as with experimental data. The functional form reproduces those total cross sections very well. When allowance is made for Ramsauer-like effects in the scattering, the parameters of the functional form required vary smoothly with energy and target mass. They too can be represented by functions of energy and mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human lens comprises two distinct regions in which the refractive index changes at different rates. The periphery contains a rapidly increasing refractive index gradient, which becomes steeper with age. The inner region contains a shallow gradient, which flattens with age, due to formation of a central plateau, of RI = 1.418, which reaches a maximum size of 7.0 × 3.05 mm around age 60 years. Formation of the plateau can be attributed to compression of fibre cells generated in prenatal life. Present in prenatal but not in postnatal fibre cells, γ-crystallin may play a role in limiting nuclear cell compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the efficacy of bilateral pedunculopontine nucleus (PPN) deep brain stimulation (DBS) as a treatment for primary progressive freezing of gait (PPFG). ------ ----- Methods: A patient with PPFG underwent bilateral PPN-DBS and was followed clinically for over 14 months. ------ ----- Results: The PPFG patient exhibited a robust improvement in gait and posture following PPN-DBS. When PPN stimulation was deactivated, postural stability and gait skills declined to pre-DBS levels, and fluoro-2-deoxy-d-glucose positron emission tomography revealed hypoactive cerebellar and brainstem regions, which significantly normalised when PPN stimulation was reactivated. ------ ----- Conclusions: This case demonstrates that the advantages of PPN-DBS may not be limited to addressing freezing of gait (FOG) in idiopathic Parkinson's disease. The PPN may also be an effective DBS target to address other forms of central gait failure.